Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pediatric Rheumatic Fever Follow-up

  • Author: Thomas K Chin, MD; Chief Editor: Lawrence K Jung, MD  more...
 
Updated: Jun 28, 2016
 

Further Outpatient Care

See the list below:

  • Patients with rheumatic fever (RF) usually demonstrate significant improvement after initiation of anti-inflammatory therapy; however, do not allow patients to resume full activities until all clinical symptoms and laboratory values have returned to normal.
  • Emphasize the importance of prophylaxis against recurrent streptococcal pharyngitis and rheumatic fever. Each recurrent episode of rheumatic carditis produces further valve damage and the likelihood of valve replacement. Patients should remain on antibiotic prophylaxis at least until the early third decade of life. Many physicians believe lifelong prophylaxis is appropriate.
  • Monitor patients routinely for the signs and symptoms of mitral stenosis, pulmonary hypertension, arrhythmia, and congestive heart failure (CHF).
Next

Complications

See the list below:

  • Potential complications include CHF from valve insufficiency (acute rheumatic fever) or stenosis (chronic rheumatic fever).
  • Associated cardiac complications include atrial arrhythmias, pulmonary edema, recurrent pulmonary emboli, infective endocarditis, thrombus formation, and systemic emboli.
Previous
Next

Prognosis

See the list below:

  • The manifestations of acute rheumatic fever resolve during a period of 12 weeks in 80% of patients and may extend as long as 15 weeks in the remaining 20% of patients.
  • Rheumatic fever was the leading cause of death in patients aged 5-20 years in the United States 100 years ago. At that time, the mortality rate was 8-30% from carditis and valvulitis but decreased to a 1-year mortality rate of 4% by the 1930s. Following the development of antibiotics, the mortality rate decreased to nearly 0% by the 1960s in the United States. However, the mortality rate has remained 1-10% in developing countries.
  • The development of penicillin also has affected the likelihood of developing chronic valvular disease after an episode of acute rheumatic fever. Prior to penicillin, 60-70% of patients developed valve disease; since the introduction of penicillin, 9-39% of patients develop valve disease.
  • In patients who developed murmurs from valve insufficiency from acute rheumatic fever, numerous factors (eg, severity of initial carditis, presence or absence of recurrences, amount of time since episode of rheumatic fever) affected the likelihood that valve abnormalities and the murmur would disappear. The type of treatment and the promptness of its initiation did not affect the likelihood that the murmur would disappear. In general, incidence of residual rheumatic heart disease (RHD) at 10 years was 34% in patients without recurrences but was 60% in patients with recurrent rheumatic fever. In patients in whom the murmur disappeared, it did so within 5 years in 50%. Thus, a significant number of patients experience resolution of valve abnormalities even 5-10 years after their episode of rheumatic fever.
  • The importance of preventing recurrences of rheumatic fever is evident.
Previous
Next

Patient Education

See the list below:

  • Emphasize measures that minimize further damage to the valves of the heart.
  • Timely evaluation and treatment of pharyngitis in children help prevent rheumatic fever.
  • Secondary prophylaxis of patients with previous rheumatic fever and valve involvement with penicillin injections every 3-4 weeks decrease the recurrence of RHD.
  • Additional prophylactic antibiotics prior to dental and surgical procedures decrease the likelihood of bacterial endocarditis.
Previous
 
Contributor Information and Disclosures
Author

Thomas K Chin, MD Professor of Pediatrics, Chief of Pediatric Cardiology, Pennsylvania State University College of Medicine

Thomas K Chin, MD is a member of the following medical societies: American Academy of Pediatrics, American Heart Association, American College of Cardiology

Disclosure: Nothing to disclose.

Coauthor(s)

Douglas Li, MD Assistant Clinical Professor, Division of Pediatric Pulmonology, Department of Pediatrics, University of California, Los Angeles, David Geffen School of Medicine, Mattel Children's Hospital UCLA

Douglas Li, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Chest Physicians, American Thoracic Society

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Thomas JA Lehman, MD FAAP, FACR, Clinical Professor of Pediatrics, Department of Pediatrics, Division of Pediatric Rheumatology, Weill Cornell Medical College; Chief, Hospital for Special Surgery

Thomas JA Lehman, MD is a member of the following medical societies: PM American Allergy Society

Disclosure: Nothing to disclose.

Chief Editor

Lawrence K Jung, MD Chief, Division of Pediatric Rheumatology, Children's National Medical Center

Lawrence K Jung, MD is a member of the following medical societies: American Association for the Advancement of Science, American Association of Immunologists, American College of Rheumatology, Clinical Immunology Society, New York Academy of Sciences

Disclosure: Nothing to disclose.

References
  1. Parks T, Smeesters PR, Steer AC. Streptococcal skin infection and rheumatic heart disease. Curr Opin Infect Dis. 2012 Apr. 25(2):145-53. [Medline].

  2. Garcia AF, Yamaga KM, Shafer LA, Bollt O, Tam EK, Cunningham MW, et al. Cardiac Myosin Epitopes Recognized by Autoantibody in Acute and Convalescent Rheumatic Fever. Pediatr Infect Dis J. 2016 Jun 3. [Medline].

  3. Pickering LK. Rheumatic fever. 2009 Red Book: Report of the Committee on Infectious Diseases. 28th ed. Elk Grove Village, Ill: American Academy of Pediatrics; 2009. 616-628.

  4. Veasy LG, Wiedmeier SE, Orsmond GS, et al. Resurgence of acute rheumatic fever in the intermountain area of the United States. N Engl J Med. 1987 Feb 19. 316(8):421-7. [Medline].

  5. Breda L, Marzetti V, Gaspari S, Del Torto M, Chiarelli F, Altobelli E. Population-based study of incidence and clinical characteristics of rheumatic Fever in abruzzo, central Italy, 2000-2009. J Pediatr. 2012 May. 160(5):832-836.e1. [Medline].

  6. Bhatia S, Tariq A. Characteristics and Temporal Trends of Patients Diagnosed with Acute Rheumatic Fever in the United States from 2001-2011. J Am Coll Cardiol. 2016 April. 67:1892.

  7. Orün UA, Ceylan O, Bilici M, Karademir S, Ocal B, Senocak F. Acute rheumatic fever in the Central Anatolia Region of Turkey: a 30-year experience in a single center. Eur J Pediatr. 2012 Feb. 171(2):361-8. [Medline].

  8. Seckeler MD, Hoke TR. The worldwide epidemiology of acute rheumatic fever and rheumatic heart disease. Clin Epidemiol. 2011 Feb 22. 3:67-84. [Medline]. [Full Text].

  9. [Guideline] Guidelines for the diagnosis of rheumatic fever. Jones Criteria, 1992 update. Special Writing Group of the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young of the American Heart Asso. JAMA. 1992 Oct 21. 268(15):2069-73. [Medline].

  10. [Guideline] American Heart Association Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young. Revision of the Jones Criteria for the diagnosis of acute rheumatic fever in the era of Doppler echocardiography: a scientific statement from the American Heart Association. Circulation. 2015 May 19. 131 (20):1806-18. [Medline].

  11. Paruby MG, Carapetis JR. Rheumatic fever in Indigenous Australian Children. J Pediatr Child Health. 2010. 46:527-533.

  12. Bas HD, Baser K, Yavuz E, Bolayir HA, Yaman B, Unlu S. A shift in the balance of regulatory T and T helper 17 cells in rheumatic heart disease. J Investig Med. 2014 Jan. 62(1):78-83. [Medline].

  13. Eriksson JG, Kajantie E, Phillips DI, Osmond C, Thornburg KL, Barker DJ. The developmental origins of chronic rheumatic heart disease. Am J Hum Biol. 2013 Sep-Oct. 25(5):655-8. [Medline].

  14. Marijon E, Ou P, Celermajer DS, Ferreira B, Mocumbi AO, Jani D, et al. Prevalence of rheumatic heart disease detected by echocardiographic screening. N Engl J Med. 2007 Aug 2. 357(5):470-6. [Medline].

  15. Beaton A, Aliku T, Okello E, Lubega S, McCarter R, Lwabi P. The utility of handheld echocardiography for early diagnosis of rheumatic heart disease. J Am Soc Echocardiogr. 2014 Jan. 27(1):42-9. [Medline].

  16. Godown J, Lu JC, Beaton A, Sable C, Mirembe G, Sanya R, et al. Handheld echocardiography versus auscultation for detection of rheumatic heart disease. Pediatrics. 2015 Apr. 135 (4):e939-44. [Medline].

  17. [Guideline] Reményi B, Wilson N, Steer A, Ferreira B, Kado J, Kumar K. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease--an evidence-based guideline. Nat Rev Cardiol. 2011. 9(5):297-309. [Medline].

  18. Robertson KA, Volmink JA, Mayosi BM. Antibiotics for the primary prevention of acute rheumatic fever: a meta-analysis. BMC Cardiovasc Disord. 2005 May 31. 5(1):11. [Medline].

  19. Dajani AS, Taubert KA, Wilson W, et al. Prevention of bacterial endocarditis. Recommendations by the American Heart Association. Circulation. 1997 Jul 1. 96(1):358-66. [Medline].

  20. Rayamajhi A, Sharma D, Shakya U. First-episode versus recurrent acute rheumatic fever: is it different?. Pediatr Int. 2009 Apr. 51(2):269-75. [Medline].

  21. Yakub MA, Dillon J, Krishna Moorthy PS, Pau KK, Nordin MN. Is rheumatic aetiology a predictor of poor outcome in the current era of mitral valve repair? Contemporary long-term results of mitral valve repair in rheumatic heart disease. Eur J Cardiothorac Surg. 2013 Oct. 44(4):673-81. [Medline].

  22. Carrie Armstrong. AHA Guidelines on Prevention of Rheumatic Fever and Diagnosis and Treatment of Acute Streptococcal Pharyngitis. American Family Physician. 2010.

  23. [Guideline] Wilson W, Taubert KA, Gewitz M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. J Am Dent Assoc. 2008 Jan. 139 Suppl:3S-24S. [Medline].

  24. Abernethy M, Bass N, Sharpe N, et al. Doppler echocardiography and the early diagnosis of carditis in acute rheumatic fever. Aust N Z J Med. 1994 Oct. 24(5):530-5. [Medline].

  25. Asbahr FR, Garvey MA, Snider LA, et al. Obsessive-compulsive symptoms among patients with Sydenham chorea. Biol Psychiatry. 2005 May 1. 57(9):1073-6. [Medline].

  26. Carapetis JR, McDonald M, Wilson NJ. Acute rheumatic fever. Lancet. 2005 Jul 9-15. 366(9480):155-68. [Medline].

  27. Circulation. The natural history of rheumatic fever and rheumatic heart disease. Ten-year report of a cooperative clinical trial of ACTH, cortisone, and aspirin. Circulation. 1965 Sep. 32(3):457-76. [Medline].

  28. Cotran RS, Kumar V, Collins T. Rheumatic fever. Robbins Pathologic Basis of Disease. 6th ed. WB Saunders Co; 1999. 570-73.

  29. Dajani A, Taubert K, Ferrieri P, et al. Treatment of acute streptococcal pharyngitis and prevention of rheumatic fever: a statement for health professionals. Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young, the American. Pediatrics. 1995 Oct. 96(4 Pt 1):758-64. [Medline].

  30. Ellis NM, Li Y, Hildebrand W, et al. T cell mimicry and epitope specificity of cross-reactive T cell clones from rheumatic heart disease. J Immunol. 2005 Oct 15. 175(8):5448-56. [Medline].

  31. Fae KC, Oshiro SE, Toubert A, et al. How an autoimmune reaction triggered by molecular mimicry between streptococcal M protein and cardiac tissue proteins leads to heart lesions in rheumatic heart disease. J Autoimmun. 2005 Mar. 24(2):101-9. [Medline].

  32. Guilherme L, Fae K, Oshiro SE, Kalil J. Molecular pathogenesis of rheumatic fever and rheumatic heart disease. Expert Rev Mol Med. 2005 Dec 8. 7(28):1-15. [Medline].

  33. Guilherme L, Ramasawmy R, Kalil J. Rheumatic fever and rheumatic heart disease: genetics and pathogenesis. Scand J Immunol. 2007 Aug-Sep. 66(2-3):199-207. [Medline]. [Full Text].

  34. Karademir S, OGuz D, Senocak F, et al. Tolmetin and salicylate therapy in acute rheumatic fever: Comparison of clinical efficacy and side-effects. Pediatr Int. 2003 Dec. 45(6):676-9. [Medline].

  35. Mukhopadhyay S, Varma S, Gade S, Yusuf J, Trehan V, Tyagi S. Regulatory T-cell deficiency in rheumatic heart disease: a preliminary observational study. J Heart Valve Dis. 2013 Jan. 22(1):118-25. [Medline].

  36. Narula J, Virmani R, Reddy KS. Rheumatic Fever. American Registry of Pathology. Washington, DC: 1999.

  37. Swedo SE, Leonard HL, Garvey M, et al. A case of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. Am J Psychiatry. 1998 Nov. 155(11):1592-8. [Medline].

  38. Walker KG, Lawrenson J, Wilmshurst JM. Neuropsychiatric movement disorders following streptococcal infection. Dev Med Child Neurol. 2005 Nov. 47(11):771-5. [Medline].

Previous
Next
 
Clinical manifestations and time course of acute rheumatic fever.
Chest radiograph showing cardiomegaly due to carditis of acute rheumatic fever.
Erythema marginatum, the characteristic rash of acute rheumatic fever.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.