Dosing & Uses
Dosage Forms & Strengths
aspirin/dipyridamole
capsule, extended release
- 25mg/200mg
Stroke
Secondary prophylaxis of transient ischemic attack (TIA) or cerebrovascular accident (CVA)
1 capsule PO q12hr
Dosing considerations
- Not interchangeable with individual components of aspirin/dipyridamole
- Intolerable headaches during initial treatment: Switch to 1 capsule PO at bedtime; patient should return to normal regimen when possible (usually 1 week)
Dosing Modifications
GFR <10 mL/min: Use not recommended
Administration
Swallow capsules whole, without chewing
Safety and efficacy not established
Interactions
Interaction Checker
No Results

Contraindicated
Serious - Use Alternative
Significant - Monitor Closely
Minor

Contraindicated (5)
- abrocitinib
abrocitinib and dipyridamole both increase anticoagulation. Contraindicated. Antiplatelet drugs, except for low-dose aspirin (=81 mg qDay), during the first 3 months of treatment are contraindicated.
abrocitinib and aspirin both increase anticoagulation. Contraindicated. Antiplatelet drugs, except for low-dose aspirin (=81 mg qDay), during the first 3 months of treatment are contraindicated. - dichlorphenamide
dichlorphenamide increases levels of aspirin by unknown mechanism. Contraindicated. Coadministration of dichlorphenamide with high-dose aspirin may increase salicylate levels. Anorexia, tachypnea, lethargy, and coma reported.
- riociguat
dipyridamole, riociguat. Either increases effects of the other by additive vasodilation. Contraindicated. Coadministration of nonspecific PDE-5 inhibitors (eg, dipyridamole, theophylline) and guanylate cyclase stimulators (eg, riociguat) is contraindicated due to risk of additive hypotension.
- mifepristone
aspirin, mifepristone. Other (see comment). Contraindicated. Comment: Aspirin induced antiplatelet activity may induce excessive bleeding after an abortion w/mifepristone (RU 486).
- theophylline
theophylline decreases effects of dipyridamole by pharmacodynamic antagonism. Contraindicated. May produce false negative results in dipyridamole thallium imaging tests. Separate by 24 hr.
Serious - Use Alternative (53)
- afatinib
dipyridamole increases levels of afatinib by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug. Reduce afatinib daily dose by 10 mg if not tolerated when coadministered with P-gp inhibitors.
- alpelisib
dipyridamole will increase the level or effect of alpelisib by Other (see comment). Avoid or Use Alternate Drug. Coadministration of alpelisib (BCRP substrate) with a BCRP inhibitor may increase alpelisib concentration, which may increase the risk of toxicities. If unable to avoid or use alternant drugs, closely monitor for increased adverse reactions.
- antithrombin alfa
antithrombin alfa, dipyridamole. Either increases effects of the other by pharmacodynamic synergism. Contraindicated. Enhanced risk of hemorrhage.
- antithrombin III
antithrombin III, dipyridamole. Either increases effects of the other by pharmacodynamic synergism. Contraindicated. Enhanced risk of hemorrhage.
- apixaban
dipyridamole and apixaban both increase anticoagulation. Avoid or Use Alternate Drug.
- argatroban
argatroban, dipyridamole. Either increases effects of the other by pharmacodynamic synergism. Contraindicated. Enhanced risk of hemorrhage.
- aspirin rectal
aspirin rectal increases effects of dipyridamole by pharmacodynamic synergism. Avoid or Use Alternate Drug. Enhanced risk of hemorrhage.
- benazepril
aspirin, benazepril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- bivalirudin
bivalirudin, dipyridamole. Either increases effects of the other by pharmacodynamic synergism. Contraindicated. Enhanced risk of hemorrhage.
- bosutinib
dipyridamole increases levels of bosutinib by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug.
- butalbital
butalbital decreases levels of dipyridamole by increasing metabolism. Contraindicated.
- caffeine
caffeine decreases effects of dipyridamole by pharmacodynamic antagonism. Contraindicated.
- caplacizumab
caplacizumab, dipyridamole. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug.
caplacizumab, aspirin. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. - captopril
aspirin, captopril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- dalteparin
dalteparin, dipyridamole. Either increases effects of the other by pharmacodynamic synergism. Contraindicated. Enhanced risk of hemorrhage.
- darolutamide
darolutamide will increase the level or effect of dipyridamole by Other (see comment). Avoid or Use Alternate Drug. Darolutamide is a BCRP inhibitor. Avoid coadministration with BCRP inhibitors. If use is unavoidable, closely monitor for adverse reactions and consider dose reduction of BCRP substrate drug (refer BCRP substrate prescribing information).
- edoxaban
dipyridamole will increase the level or effect of edoxaban by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug. Dose adjustment may be required with strong P-gp inhibitors. DVT/PE treatment: Decrease dose to 30 mg PO once daily. NVAF: No dose reduction recommended
- enalapril
aspirin, enalapril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- enoxaparin
enoxaparin, dipyridamole. Either increases effects of the other by pharmacodynamic synergism. Contraindicated. Enhanced risk of hemorrhage.
- fondaparinux
fondaparinux, dipyridamole. Either increases effects of the other by pharmacodynamic synergism. Contraindicated. Enhanced risk of hemorrhage.
- fosinopril
aspirin, fosinopril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- heparin
heparin, dipyridamole. Either increases effects of the other by pharmacodynamic synergism. Contraindicated. Enhanced risk of hemorrhage.
- ibuprofen
ibuprofen decreases effects of aspirin by Other (see comment). Avoid or Use Alternate Drug. Comment: Ibuprofen decreases the antiplatelet effects of low-dose aspirin by blocking the active site of platelet cyclooxygenase. Administer ibuprofen 8 h before aspirin or at least 2-4 h after aspirin. The effect of other NSAIDs on aspirin is not established.
ibuprofen increases toxicity of aspirin by anticoagulation. Avoid or Use Alternate Drug. increases risk of bleeding. - ibuprofen IV
ibuprofen IV increases toxicity of aspirin by anticoagulation. Avoid or Use Alternate Drug. increases risk of bleeding.
ibuprofen IV decreases effects of aspirin by Other (see comment). Avoid or Use Alternate Drug. Comment: Ibuprofen decreases the antiplatelet effects of low-dose aspirin by blocking the active site of platelet cyclooxygenase. Administer ibuprofen 8 h before aspirin or at least 2-4 h after aspirin. The effect of other NSAIDs on aspirin is not established. - ketorolac
aspirin, ketorolac. Either increases toxicity of the other by pharmacodynamic synergism. Contraindicated.
- ketorolac intranasal
aspirin, ketorolac intranasal. Either increases toxicity of the other by pharmacodynamic synergism. Contraindicated.
- lasmiditan
lasmiditan increases levels of dipyridamole by Other (see comment). Avoid or Use Alternate Drug. Comment: Lasmiditan inhibits BCRP in vitro. Avoid coadministration of lasmiditan with BCRP substrates.
- leniolisib
leniolisib will increase the level or effect of dipyridamole by Other (see comment). Avoid or Use Alternate Drug. Leniolisib, a BCRP inhibitor, may increase systemic exposure of BCRP substrates
- lesinurad
aspirin decreases effects of lesinurad by unspecified interaction mechanism. Avoid or Use Alternate Drug. Aspirin at doses >325 mg/day may decrease lesinurad efficacy. Aspirin doses 325 mg/day or less (ie, for cardiovascular event prophylaxis) does not decrease lesinurad efficacy and can be coadministered.
- lisinopril
aspirin, lisinopril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- macimorelin
aspirin, macimorelin. unspecified interaction mechanism. Avoid or Use Alternate Drug. Drugs that directly affect the pituitary secretion of growth hormone (GH) may impact the accuracy of the macimorelin diagnostic test. Allow sufficient washout time of drugs affecting GH release before administering macimorelin. .
- measles, mumps, rubella and varicella vaccine, live
aspirin, measles, mumps, rubella and varicella vaccine, live. Mechanism: unspecified interaction mechanism. Avoid or Use Alternate Drug. Risk of Reye's Syndrome with combination; avoid salicylate use for 6 wks after vaccination.
- methotrexate
aspirin increases levels of methotrexate by decreasing renal clearance. Avoid or Use Alternate Drug. Caution should be exercised when salicylates are given in combination with methotrexate. Risk for drug interactions with methotrexate is greatest during high-dose methotrexate therapy, it has been recommended that any of these drugs be used cautiously with methotrexate even when methotrexate is used in low doses.
- mifepristone
aspirin will decrease the level or effect of mifepristone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- mitotane
aspirin will decrease the level or effect of mitotane by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- moexipril
aspirin, moexipril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- ozanimod
dipyridamole increases toxicity of ozanimod by Other (see comment). Avoid or Use Alternate Drug. Comment: Coadministration of ozanimod (a BCRP substrate) with BCRP inhibitors increases the exposure of the minor (RP101988, RP101075) and major active metabolites (CC112273, CC1084037) of ozanimod, which may increase the risk of ozanimod adverse reactions. .
- pemetrexed
aspirin increases levels of pemetrexed by unspecified interaction mechanism. Avoid or Use Alternate Drug. Interrupt dosing in all patients taking NSAIDs with long elimination half-lives for at least 5d before, the day of, and 2d following pemetrexed administration. If coadministration of an NSAID is necessary, closely monitor patients for toxicity, especially myelosuppression, renal toxicity, and GI toxicity.
- perindopril
aspirin, perindopril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- pomalidomide
dipyridamole increases levels of pomalidomide by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug.
- probenecid
aspirin decreases effects of probenecid by acidic (anionic) drug competition for renal tubular clearance. Avoid or Use Alternate Drug. Aspirin decreases uricosuric action of probenecid.
- protamine
protamine, dipyridamole. Either increases effects of the other by pharmacodynamic synergism. Contraindicated. Enhanced risk of hemorrhage.
- quinapril
aspirin, quinapril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- ramipril
aspirin, ramipril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- regadenoson
dipyridamole, regadenoson. Mechanism: unspecified interaction mechanism. Contraindicated. Regadenoson's effects may be changed; mfr. recommends avoiding dipyridamole for 2 days prior to administration.
- rimegepant
dipyridamole will increase the level or effect of rimegepant by Other (see comment). Avoid or Use Alternate Drug. Avoid coadministration of rimegepant (a BCRP substrate) with inhibitors of BCRP.
- riociguat
dipyridamole will increase the level or effect of riociguat by decreasing metabolism. Avoid or Use Alternate Drug. Coadministration of riociguat (substrate of CYP isoenzymes 1A1, 2C8, 3A, 2J2) with strong CYP inhibitors may require a decreased initial dose of 0.5 mg PO TID; monitor for signs of hypotension and reduce dose if needed
dipyridamole will increase the level or effect of riociguat by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug. Coadministration of riociguat (P-gp substrate) with strong P-gp inhibitors may require a decreased initial dose of 0.5 mg PO TID; monitor for signs of hypotension and reduce dose if needed - talazoparib
dipyridamole will increase the level or effect of talazoparib by Other (see comment). Avoid or Use Alternate Drug. BCRP inhibitors may increase systemic exposure of talazoparib (a BCRP substrate). If coadministration cannot be avoided, monitor for potential adverse reactions.
- ticlopidine
aspirin increases effects of ticlopidine by pharmacodynamic synergism. Avoid or Use Alternate Drug. Enhanced risk of hemorrhage.
- topotecan
dipyridamole will increase the level or effect of topotecan by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug. Product labeling for PO topotecan recommends avoiding concomitant use of P-gp inhibitors; the interaction with IV topotecan may be less severe but is still likely of clinical significance
- trandolapril
aspirin, trandolapril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- varicella virus vaccine live
aspirin, varicella virus vaccine live. Mechanism: unspecified interaction mechanism. Avoid or Use Alternate Drug. Risk of Reye's Syndrome with combination; avoid salicylate use for 6 wks after vaccination.
- venetoclax
dipyridamole will increase the level or effect of venetoclax by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug. If a P-gp inhibitor must be used, reduce the venetoclax dose by at least 50%. Monitor more closely for signs of venetoclax toxicities.
Monitor Closely (297)
- abciximab
aspirin, abciximab. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- acalabrutinib
acalabrutinib increases effects of aspirin by anticoagulation. Modify Therapy/Monitor Closely. Coadministration of acalabrutinib with antiplatelets or anticoagulants may further increase risk of hemorrhage. Monitor for signs of bleeding and consider the benefit-risk of withholding acalabrutinib for 3-7 days presurgery and postsurgery depending upon the type of surgery and the risk of bleeding.
acalabrutinib increases levels of dipyridamole by Other (see comment). Use Caution/Monitor. Comment: Acalabrutinib may increase exposure to coadministered BCRP substrates by inhibition of intestinal BCRP.
acalabrutinib increases effects of dipyridamole by anticoagulation. Modify Therapy/Monitor Closely. Coadministration of acalabrutinib with antiplatelets or anticoagulants may further increase risk of hemorrhage. Monitor for signs of bleeding and consider the benefit-risk of withholding acalabrutinib for 3-7 days presurgery and postsurgery depending upon the type of surgery and the risk of bleeding. - acebutolol
acebutolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of acebutolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - adenosine
dipyridamole increases levels of adenosine by decreasing metabolism. Use Caution/Monitor.
- aceclofenac
aceclofenac and aspirin both increase anticoagulation. Use Caution/Monitor.
aceclofenac and aspirin both increase serum potassium. Use Caution/Monitor. - acemetacin
acemetacin and aspirin both increase anticoagulation. Use Caution/Monitor.
acemetacin and aspirin both increase serum potassium. Use Caution/Monitor. - acetazolamide
acetazolamide, aspirin. Either increases levels of the other by Other (see comment). Use Caution/Monitor. Comment: Carbonic anhydrase inhibitors (CAIs) and salicylates inhibit each other's renal tubular secretion, resulting in increased plasma levels. CAIs also shift salicylates from plasma to the CNS, leading to potential neurotoxicity.
acetazolamide, aspirin. Mechanism: passive renal tubular reabsorption due to increased pH. Use Caution/Monitor. Salicylate levels increased at moderate doses; risk of CNS toxicity. Salicylate levels decreased at large doses (d/t increased renal excretion of unchanged salicylic acid). - agrimony
aspirin and agrimony both increase anticoagulation. Use Caution/Monitor.
- albuterol
aspirin increases and albuterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- alfalfa
aspirin and alfalfa both increase anticoagulation. Use Caution/Monitor.
- alfuzosin
aspirin decreases effects of alfuzosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- aliskiren
aspirin will decrease the level or effect of aliskiren by Other (see comment). Use Caution/Monitor. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function, coadministration of NSAIDs with drugs that affect RAAS may increase the risk of renal impairment (including acute renal failure) and cause loss of antihypertensive effect. Monitor renal function periodically.
- alteplase
aspirin, alteplase. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- American ginseng
aspirin and American ginseng both increase anticoagulation. Use Caution/Monitor.
- amiloride
amiloride and aspirin both increase serum potassium. Modify Therapy/Monitor Closely.
- amoxicillin
amoxicillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
amoxicillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - ampicillin
ampicillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
- anagrelide
aspirin, anagrelide. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; increases risk of bleeding; monitor closely.
anagrelide, aspirin. Either increases toxicity of the other by Mechanism: pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; increases risk of bleeding; monitor closely. - antithrombin alfa
antithrombin alfa and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin, antithrombin alfa. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - antithrombin III
antithrombin III and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin, antithrombin III. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - apalutamide
apalutamide will decrease the level or effect of dipyridamole by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- apixaban
aspirin and apixaban both increase anticoagulation. Modify Therapy/Monitor Closely. Both drugs have the potential to cause bleeding. The need for simultaneous use of low-dose aspirin (<100 mg/day) with anticoagulants are common for patients with cardiovascular disease, but may result in increased bleeding; monitor closely. Promptly evaluate any signs or symptoms of blood loss if treated concomitantly with low-dose aspiriin. Avoid coadministration with chronic use of higher dose aspirin. In 1 trial (APPRAISE-2), therapy was terminated because of significantly increased bleeding when apixaban was administered with dual antiplatelet therapy (eg, aspirin plus clopidogrel) compared with single antiplatelet treatment
- arformoterol
aspirin increases and arformoterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- argatroban
argatroban and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin, argatroban. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - asenapine
aspirin decreases effects of asenapine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- aspirin
aspirin, dipyridamole. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- aspirin/citric acid/sodium bicarbonate
aspirin/citric acid/sodium bicarbonate, dipyridamole. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- atenolol
atenolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of atenolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - azficel-T
azficel-T, aspirin. Other (see comment). Use Caution/Monitor. Comment: Patients taking aspirin may experience increased bruising or bleeding at biopsy and/or injection sites. Concomitant use of aspirin is not recommended. .
azficel-T, dipyridamole. Other (see comment). Use Caution/Monitor. Comment: Coadministration with anticoagulants or antiplatelets may increase bruising or bleeding at biopsy and/or injection sites; concomitant use not recommended. Decisions regarding continued use or cessation of anticoagulants or antiplatelets should be made by a physician. - azilsartan
aspirin, azilsartan. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals.
aspirin decreases effects of azilsartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect. - berotralstat
dipyridamole increases levels of berotralstat by Other (see comment). Modify Therapy/Monitor Closely. Comment: Reduced dose of berotralstat (a BCRP substrate) to 110 mg/day when coadministered with BCRP inhibitors.
- bemiparin
bemiparin and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
- benazepril
benazepril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.
- bendroflumethiazide
aspirin increases and bendroflumethiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- betaxolol
betaxolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of betaxolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - betrixaban
dipyridamole increases levels of betrixaban by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Decrease betrixaban dose to 80 mg PO once, then 40 mg PO qDay if coadministered with a P-gp inhibitor.
dipyridamole, betrixaban. Either increases levels of the other by anticoagulation. Use Caution/Monitor.
aspirin, betrixaban. Either increases levels of the other by anticoagulation. Use Caution/Monitor. - bimatoprost
bimatoprost, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).
- ceritinib
dipyridamole increases levels of ceritinib by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor.
- bisoprolol
bisoprolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of bisoprolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - bivalirudin
bivalirudin and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin, bivalirudin. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - brinzolamide
brinzolamide, aspirin. Either increases levels of the other by Other (see comment). Use Caution/Monitor. Comment: Carbonic anhydrase inhibitors (CAIs) and salicylates inhibit each other's renal tubular secretion, resulting in increased plasma levels. CAIs also shift salicylates from plasma to the CNS, leading to potential neurotoxicity.
- bumetanide
aspirin increases and bumetanide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
aspirin decreases effects of bumetanide by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis. - candesartan
candesartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of candesartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
candesartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - captopril
captopril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, elderly or volume depleted individuals.
- carbenoxolone
aspirin increases and carbenoxolone decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- carvedilol
carvedilol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of carvedilol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - celecoxib
aspirin and celecoxib both increase anticoagulation. Use Caution/Monitor.
aspirin and celecoxib both increase serum potassium. Use Caution/Monitor. - celiprolol
celiprolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of celiprolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - chlorothiazide
aspirin increases and chlorothiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- chlorpropamide
aspirin increases effects of chlorpropamide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.
- chlorthalidone
aspirin increases and chlorthalidone decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- cholic acid
dipyridamole increases toxicity of cholic acid by decreasing elimination. Modify Therapy/Monitor Closely. Avoid concomitant use of inhibitors of the bile salt efflux pump (BSEP). May exacerbate accumulation of conjugated bile salts in the liver and result in clinical symptoms. If concomitant use is necessary, monitor serum transaminases and bilirubin.
- choline magnesium trisalicylate
aspirin and choline magnesium trisalicylate both increase anticoagulation. Use Caution/Monitor.
aspirin and choline magnesium trisalicylate both increase serum potassium. Use Caution/Monitor. - cilostazol
aspirin, cilostazol. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- cinnamon
aspirin and cinnamon both increase anticoagulation. Use Caution/Monitor.
- ciprofloxacin
aspirin decreases levels of ciprofloxacin by Other (see comment). Use Caution/Monitor. Comment: Buffered aspirin may decrease absorption of quinolones. Consider administering 2 hr before or 6 hr after, buffered aspirin administration.
- citalopram
citalopram increases effects of dipyridamole by pharmacodynamic synergism. Use Caution/Monitor. Combination may increase risk of bleeding.
citalopram, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. If possible, avoid concurrent use. - clomipramine
clomipramine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. Clomipramine inhib. serotonin uptake by platelets.
- dabigatran
dabigatran, dipyridamole. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Both drugs have the potential to cause bleeding. Concomitant use may increase risk of bleeding.
dipyridamole will increase the level or effect of dabigatran by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Atrial fibrillation: Avoid coadministering dabigatran with P-gp inhibitors if CrCl <30 mL/min. DVT/PE treatment: Avoid coadministering dabigatran with P-gp inhibitors if CrCl <50 mL/min - clopidogrel
aspirin, clopidogrel. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- collagenase clostridium histolyticum
aspirin increases toxicity of collagenase clostridium histolyticum by anticoagulation. Use Caution/Monitor. Collagenase clostridium histolyticum has high incidence of ecchymosis/contusion at injection site; avoid concomitant anticoagulants (except for low-dose aspirin, ie, up to 150 mg/day).
- cordyceps
aspirin and cordyceps both increase anticoagulation. Use Caution/Monitor.
- cortisone
aspirin, cortisone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- cyclopenthiazide
aspirin increases and cyclopenthiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- dabigatran
dabigatran and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely. Both drugs have the potential to cause bleeding. The need for simultaneous use of low-dose aspirin (<100 mg/day) with anticoagulants are common for patients with cardiovascular disease, but may result in increased bleeding; monitor closely. Promptly evaluate any signs or symptoms of blood loss if treated concomitantly with low-dose aspirin. Avoid coadministration with chronic use of higher dose aspirin
- dalteparin
dalteparin and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin, dalteparin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - deferasirox
deferasirox, dipyridamole. Other (see comment). Use Caution/Monitor. Comment: Gastric ulceration and GI bleeding have been reported in patients taking deferasirox, use caution when coadministering with other drugs known to increase the risk of peptic ulcers or gastric hemorrhage including anticoagulants.
deferasirox, aspirin. Other (see comment). Use Caution/Monitor. Comment: Combination may increase GI bleeding, ulceration and irritation. Use with caution. - defibrotide
defibrotide increases effects of aspirin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Defibrotide may enhance effects of platelet inhibitors.
- duvelisib
dipyridamole will increase the level or effect of duvelisib by Other (see comment). Use Caution/Monitor. Coadministration of duvelisib (a BCRP substrate) with a BCRP transport inhibitor may increase levels or effects of duvelisib.
- deflazacort
aspirin, deflazacort. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- desirudin
aspirin, desirudin. Either increases levels of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- dexamethasone
aspirin, dexamethasone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- diclofenac
aspirin and diclofenac both increase anticoagulation. Use Caution/Monitor.
aspirin and diclofenac both increase serum potassium. Use Caution/Monitor. - dicloxacillin
dicloxacillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
- diflunisal
aspirin and diflunisal both increase anticoagulation. Use Caution/Monitor.
aspirin and diflunisal both increase serum potassium. Use Caution/Monitor. - digoxin
aspirin and digoxin both increase serum potassium. Use Caution/Monitor.
- dipyridamole
aspirin, dipyridamole. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- dobutamine
aspirin increases and dobutamine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- dong quai
aspirin and dong quai both increase anticoagulation. Use Caution/Monitor.
- dopexamine
aspirin increases and dopexamine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- doxazosin
aspirin decreases effects of doxazosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- drospirenone
drospirenone and aspirin both increase serum potassium. Modify Therapy/Monitor Closely.
- duloxetine
duloxetine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- edoxaban
edoxaban, dipyridamole. Either increases toxicity of the other by anticoagulation. Modify Therapy/Monitor Closely. Both drugs have the potential to cause bleeding. The need for simultaneous use of platelet aggregation inhibitors with anticoagulants is common for patients with cardiovascular disease, but may result in increased bleeding; monitor closely. Promptly evaluate any signs or symptoms of blood loss.
edoxaban, aspirin. Either increases toxicity of the other by anticoagulation. Modify Therapy/Monitor Closely. Both drugs have the potential to cause bleeding. The need for simultaneous use of low-dose aspirin (<100 mg/day) with anticoagulants are common for patients with cardiovascular disease, but may result in increased bleeding; monitor closely. Promptly evaluate any signs or symptoms of blood loss if treated concomitantly with low-dose aspirin. Avoid coadministration with chronic use of higher dose aspirin. - eluxadoline
eluxadoline increases levels of dipyridamole by decreasing metabolism. Use Caution/Monitor. Eluxadoline may increase the systemic exposure of coadministered BCRP substrates.
- elvitegravir/cobicistat/emtricitabine/tenofovir DF
elvitegravir/cobicistat/emtricitabine/tenofovir DF, aspirin. Either increases toxicity of the other by decreasing renal clearance. Modify Therapy/Monitor Closely. Toxicity may result from coadministration of emtricitabine and tenofovir with other drugs that are also primarily excreted by glomerular filtration and/or active tubular secretion including high-dose or multiple-dose NSAIDs; alternatives to NSAIDs should be considered.
- enalapril
enalapril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.
- encorafenib
encorafenib will increase the level or effect of dipyridamole by Other (see comment). Modify Therapy/Monitor Closely. Encorafenib (a BCRP inhibitor) may increase the concentration and toxicities of BCRP substrates. Closely monitor for signs and symptoms of increased exposure and consider adjusting the dose of these substrates.
- enoxaparin
enoxaparin and aspirin both increase anticoagulation. Use Caution/Monitor. Additive effects are intended when both drugs are prescribed as indicated for unstable angina, non-Q-wave MI, and STEMI
aspirin, enoxaparin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - ephedrine
aspirin increases and ephedrine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- epinephrine
aspirin increases and epinephrine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- epinephrine racemic
aspirin increases and epinephrine racemic decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- epoprostenol
aspirin and epoprostenol both increase anticoagulation. Use Caution/Monitor.
- eprosartan
eprosartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of eprosartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
eprosartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - eptifibatide
aspirin, eptifibatide. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- escitalopram
escitalopram, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- esmolol
esmolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of esmolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - ethacrynic acid
aspirin increases and ethacrynic acid decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- etodolac
aspirin and etodolac both increase anticoagulation. Use Caution/Monitor.
aspirin and etodolac both increase serum potassium. Use Caution/Monitor. - fenbufen
aspirin and fenbufen both increase anticoagulation. Use Caution/Monitor.
aspirin and fenbufen both increase serum potassium. Use Caution/Monitor. - fennel
aspirin and fennel both increase anticoagulation. Use Caution/Monitor.
- fenoprofen
aspirin and fenoprofen both increase anticoagulation. Use Caution/Monitor.
aspirin and fenoprofen both increase serum potassium. Use Caution/Monitor. - feverfew
aspirin and feverfew both increase anticoagulation. Use Caution/Monitor.
- fish oil
fish oil, dipyridamole. Other (see comment). Use Caution/Monitor. Comment: Patients taking fish oil and an anticoagulant or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding. .
fish oil, aspirin. Other (see comment). Use Caution/Monitor. Comment: Patients taking fish oil and an anticoagulant or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding. . - fish oil triglycerides
fish oil triglycerides will increase the level or effect of dipyridamole by anticoagulation. Use Caution/Monitor. Prolonged bleeding reported in patients taking antiplatelet agents or anticoagulants and oral omega-3 fatty acids. Periodically monitor bleeding time in patients receiving fish oil triglycerides and concomitant antiplatelet agents or anticoagulants.
fish oil triglycerides will increase the level or effect of aspirin by anticoagulation. Use Caution/Monitor. Prolonged bleeding reported in patients taking antiplatelet agents or anticoagulants and oral omega-3 fatty acids. Periodically monitor bleeding time in patients receiving fish oil triglycerides and concomitant antiplatelet agents or anticoagulants. - fludrocortisone
aspirin, fludrocortisone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- fostemsavir
fostemsavir will increase the level or effect of dipyridamole by Other (see comment). Modify Therapy/Monitor Closely. Fostemsavir inhibits BCRP transporters. If possible, avoid coadministration or modify dose of BCRP substrate coadministered with fostemsavir.
- fluoxetine
fluoxetine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- flurbiprofen
aspirin and flurbiprofen both increase anticoagulation. Use Caution/Monitor.
aspirin and flurbiprofen both increase serum potassium. Use Caution/Monitor. - fluvoxamine
fluvoxamine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding SSRIs inhib. serotonin uptake by platelets.
- fondaparinux
fondaparinux and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
- formoterol
aspirin increases and formoterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- forskolin
aspirin and forskolin both increase anticoagulation. Use Caution/Monitor.
- fosinopril
fosinopril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.
- furosemide
aspirin increases and furosemide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- garlic
aspirin and garlic both increase anticoagulation. Use Caution/Monitor.
- gentamicin
aspirin increases and gentamicin decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- ginger
aspirin and ginger both increase anticoagulation. Use Caution/Monitor.
- ginkgo biloba
aspirin and ginkgo biloba both increase anticoagulation. Use Caution/Monitor.
- glecaprevir/pibrentasvir
dipyridamole will increase the level or effect of glecaprevir/pibrentasvir by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor.
dipyridamole will increase the level or effect of glecaprevir/pibrentasvir by decreasing metabolism. Use Caution/Monitor. Caution when coadministering glecaprevir/pibrentasvir with BCRP inhibitors.
glecaprevir/pibrentasvir will increase the level or effect of dipyridamole by decreasing metabolism. Use Caution/Monitor. Glecaprevir/pibrentasvir may increase plasma concentration of BCRP substrates. - glimepiride
aspirin increases effects of glimepiride by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.
- glipizide
aspirin increases effects of glipizide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.
- glyburide
aspirin increases effects of glyburide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.
- green tea
green tea increases effects of dipyridamole by pharmacodynamic synergism. Use Caution/Monitor. (Theoretical interaction). Dipyridamole is a platelet inhibitor and green tea has demonstrated antiplatelet effects in animals, it may be prudent to avoid the concomitant use of green tea with chronic dipyridamole therapy as the risk of bleeding may be increased.
green tea increases effects of aspirin by pharmacodynamic synergism. Use Caution/Monitor. (Theoretical, due to caffeine content). Combination may increase risk of bleeding. - griseofulvin
griseofulvin decreases levels of aspirin by unknown mechanism. Use Caution/Monitor.
- ibrutinib
ibrutinib will increase the level or effect of dipyridamole by anticoagulation. Use Caution/Monitor. Ibrutinib may increase the risk of hemorrhage in patients receiving antiplatelet or anticoagulant therapies and monitor for signs of bleeding.
- heparin
heparin and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin, heparin. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - horse chestnut seed
aspirin and horse chestnut seed both increase anticoagulation. Use Caution/Monitor.
- hyaluronidase
aspirin decreases effects of hyaluronidase by Other (see comment). Use Caution/Monitor. Comment: Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients may require larger amounts of hyaluronidase for equivalent dispersing effect.
- hydralazine
aspirin decreases effects of hydralazine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- hydrochlorothiazide
aspirin increases and hydrochlorothiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- hydrocortisone
aspirin, hydrocortisone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- ibrutinib
ibrutinib will increase the level or effect of aspirin by anticoagulation. Use Caution/Monitor. Ibrutinib may increase the risk of hemorrhage in patients receiving antiplatelet or anticoagulant therapies and monitor for signs of bleeding.
- ibuprofen
aspirin and ibuprofen both increase anticoagulation. Use Caution/Monitor.
aspirin and ibuprofen both increase serum potassium. Use Caution/Monitor. - ibuprofen IV
aspirin will increase the level or effect of ibuprofen IV by acidic (anionic) drug competition for renal tubular clearance. Modify Therapy/Monitor Closely.
aspirin and ibuprofen IV both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin and ibuprofen IV both increase serum potassium. Use Caution/Monitor. - icosapent
icosapent, aspirin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Icosapent may prolong bleeding time; monitor periodically if coadministered with other drugs that affect bleeding.
icosapent, dipyridamole. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Icosapent may prolong bleeding time; monitor periodically if coadministered with other drugs that affect bleeding. - imatinib
imatinib, aspirin. Either increases toxicity of the other by Other (see comment). Modify Therapy/Monitor Closely. Comment: Imatinib may cause thrombocytopenia; bleeding risk increased when imatinib is coadministered with anticoagulants, NSAIDs, platelet inhibitors, and thrombolytic agents.
- melatonin
melatonin increases effects of dipyridamole by anticoagulation. Use Caution/Monitor. Melatonin may decrease prothrombin time.
- indapamide
aspirin increases and indapamide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- indomethacin
aspirin and indomethacin both increase anticoagulation. Use Caution/Monitor.
aspirin and indomethacin both increase serum potassium. Use Caution/Monitor. - insulin aspart
aspirin increases effects of insulin aspart by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin aspart protamine/insulin aspart
aspirin increases effects of insulin aspart protamine/insulin aspart by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin degludec
aspirin increases effects of insulin degludec by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin degludec/insulin aspart
aspirin, insulin degludec/insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Both drugs decrease blood glucose.
- insulin detemir
aspirin increases effects of insulin detemir by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin glargine
aspirin increases effects of insulin glargine by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin glulisine
aspirin increases effects of insulin glulisine by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin inhaled
aspirin increases effects of insulin inhaled by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin isophane human/insulin regular human
aspirin increases effects of insulin isophane human/insulin regular human by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin lispro
aspirin increases effects of insulin lispro by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin lispro protamine/insulin lispro
aspirin increases effects of insulin lispro protamine/insulin lispro by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin NPH
aspirin increases effects of insulin NPH by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin regular human
aspirin increases effects of insulin regular human by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- irbesartan
irbesartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of irbesartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
irbesartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - isoproterenol
aspirin increases and isoproterenol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- ketoprofen
aspirin and ketoprofen both increase anticoagulation. Use Caution/Monitor.
aspirin and ketoprofen both increase serum potassium. Use Caution/Monitor. - ketorolac
aspirin and ketorolac both increase anticoagulation. Use Caution/Monitor.
aspirin and ketorolac both increase serum potassium. Use Caution/Monitor. - ketorolac intranasal
aspirin and ketorolac intranasal both increase anticoagulation. Use Caution/Monitor.
aspirin and ketorolac intranasal both increase serum potassium. Use Caution/Monitor. - labetalol
labetalol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of labetalol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - latanoprost
latanoprost, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).
- latanoprostene bunod ophthalmic
latanoprostene bunod ophthalmic, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).
- levalbuterol
aspirin increases and levalbuterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- levomilnacipran
levomilnacipran, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. SNRIs may further impair platelet activity in patients taking antiplatelet or anticoagulant drugs.
- lisinopril
lisinopril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.
- lithium
aspirin increases levels of lithium by decreasing renal clearance. Use Caution/Monitor.
- lornoxicam
aspirin and lornoxicam both increase anticoagulation. Use Caution/Monitor.
aspirin and lornoxicam both increase serum potassium. Use Caution/Monitor. - losartan
losartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of losartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
losartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - meclofenamate
aspirin and meclofenamate both increase anticoagulation. Use Caution/Monitor.
aspirin and meclofenamate both increase serum potassium. Use Caution/Monitor. - mefenamic acid
aspirin and mefenamic acid both increase anticoagulation. Use Caution/Monitor.
aspirin and mefenamic acid both increase serum potassium. Use Caution/Monitor. - melatonin
melatonin increases effects of aspirin by anticoagulation. Use Caution/Monitor. Melatonin may decrease prothrombin time.
- meloxicam
aspirin and meloxicam both increase anticoagulation. Use Caution/Monitor.
aspirin and meloxicam both increase serum potassium. Use Caution/Monitor. - mesalamine
mesalamine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Additive nephrotoxicity.
- metaproterenol
aspirin increases and metaproterenol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- methazolamide
methazolamide, aspirin. Either increases levels of the other by Other (see comment). Use Caution/Monitor. Comment: Carbonic anhydrase inhibitors (CAIs) and salicylates inhibit each other's renal tubular secretion, resulting in increased plasma levels. CAIs also shift salicylates from plasma to the CNS, leading to potential neurotoxicity.
- methyclothiazide
aspirin increases and methyclothiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor. .
- methylprednisolone
aspirin, methylprednisolone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- metolazone
aspirin increases and metolazone decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- metoprolol
metoprolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of metoprolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - milnacipran
milnacipran, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- mistletoe
aspirin increases and mistletoe decreases anticoagulation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- moexipril
moexipril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.
- moxisylyte
aspirin decreases effects of moxisylyte by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- mycophenolate
aspirin will increase the level or effect of mycophenolate by acidic (anionic) drug competition for renal tubular clearance. Use Caution/Monitor.
- nabumetone
aspirin and nabumetone both increase anticoagulation. Use Caution/Monitor.
aspirin and nabumetone both increase serum potassium. Use Caution/Monitor. - nadolol
nadolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of nadolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - nafcillin
nafcillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
nafcillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - naldemedine
dipyridamole increases levels of naldemedine by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Monitor naldemedine for potential adverse effects if coadministered with P-gp inhibitors.
- naproxen
aspirin and naproxen both increase anticoagulation. Use Caution/Monitor.
aspirin and naproxen both increase serum potassium. Use Caution/Monitor. - nebivolol
nebivolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of nebivolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - nefazodone
nefazodone, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- nettle
aspirin increases and nettle decreases anticoagulation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- nintedanib
dipyridamole increases levels of nintedanib by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. If nintedanib adverse effects occur, management may require interruption, dose reduction, or discontinuation of therapy .
- nitazoxanide
nitazoxanide, aspirin. Either increases levels of the other by Mechanism: plasma protein binding competition. Use Caution/Monitor.
- nitroglycerin rectal
aspirin will increase the level or effect of nitroglycerin rectal by Other (see comment). Use Caution/Monitor. The pharmacological effects of nitroglycerin may be enhanced by concomitant administration of aspirin.
- nitroglycerin sublingual
aspirin increases effects of nitroglycerin sublingual by additive vasodilation. Use Caution/Monitor. Vasodilatory and hemodynamic effects of NTG may be enhanced by coadministration with aspirin (additive effect desirable for emergent treatment).
- norepinephrine
aspirin increases and norepinephrine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- olmesartan
olmesartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of olmesartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
olmesartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - omega 3 carboxylic acids
omega 3 carboxylic acids, dipyridamole. Other (see comment). Use Caution/Monitor. Comment: Patients taking omega-3 acids and an anticoagulant or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding.
omega 3 carboxylic acids, aspirin. Other (see comment). Use Caution/Monitor. Comment: Patients taking omega-3 acids and an anticoagulant or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding. - omega 3 fatty acids
omega 3 fatty acids, dipyridamole. Other (see comment). Use Caution/Monitor. Comment: Patients taking omega-3-fatty acids and an anticoagulant or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding. .
omega 3 fatty acids, aspirin. Other (see comment). Use Caution/Monitor. Comment: Patients taking omega-3-fatty acids and an anticoagulant or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding. . - ospemifene
aspirin, ospemifene. Either increases levels of the other by plasma protein binding competition. Modify Therapy/Monitor Closely.
- oteseconazole
oteseconazole will increase the level or effect of dipyridamole by Other (see comment). Modify Therapy/Monitor Closely. Otesezonale, a BCRP inhibitor, may increase the effects and risk of toxicities of BCRP substrates. Use lowest starting dose of BCRP substrate, or consider reducing BCRP substrate dose.
- oxacillin
oxacillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
oxacillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - oxaprozin
aspirin and oxaprozin both increase anticoagulation. Use Caution/Monitor.
aspirin and oxaprozin both increase serum potassium. Use Caution/Monitor. - panax ginseng
aspirin and panax ginseng both increase anticoagulation. Use Caution/Monitor.
- parecoxib
aspirin and parecoxib both increase anticoagulation. Use Caution/Monitor.
aspirin and parecoxib both increase serum potassium. Use Caution/Monitor. - paroxetine
paroxetine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- pau d'arco
aspirin and pau d'arco both increase anticoagulation. Use Caution/Monitor.
- pegaspargase
pegaspargase increases effects of aspirin by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of bleeding events.
- penbutolol
penbutolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of penbutolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - penicillin G aqueous
penicillin G aqueous, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
penicillin G aqueous, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - perindopril
perindopril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high doses of aspirin,in elderly or volume depleted individuals.
- phenindione
phenindione and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
- phenoxybenzamine
aspirin decreases effects of phenoxybenzamine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- phentolamine
aspirin decreases effects of phentolamine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- phytoestrogens
aspirin and phytoestrogens both increase anticoagulation. Use Caution/Monitor.
- pindolol
pindolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of pindolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - piracetam
piracetam increases effects of dipyridamole by pharmacodynamic synergism. Use Caution/Monitor.
- pirbuterol
aspirin increases and pirbuterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- piroxicam
aspirin and piroxicam both increase anticoagulation. Use Caution/Monitor.
aspirin and piroxicam both increase serum potassium. Use Caution/Monitor. - pivmecillinam
pivmecillinam, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
pivmecillinam, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - ponatinib
ponatinib increases levels of dipyridamole by Other (see comment). Use Caution/Monitor.
- porfimer
dipyridamole decreases effects of porfimer by pharmacodynamic antagonism. Use Caution/Monitor.
- potassium acid phosphate
aspirin and potassium acid phosphate both increase serum potassium. Modify Therapy/Monitor Closely.
- potassium chloride
aspirin and potassium chloride both increase serum potassium. Modify Therapy/Monitor Closely.
- potassium citrate
aspirin and potassium citrate both increase serum potassium. Use Caution/Monitor.
- potassium iodide
potassium iodide and aspirin both increase serum potassium. Use Caution/Monitor.
- prasugrel
aspirin, prasugrel. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- prazosin
aspirin decreases effects of prazosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- prednisolone
aspirin, prednisolone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- prednisone
aspirin, prednisone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- propranolol
propranolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of propranolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - protamine
protamine and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
- quinapril
quinapril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high doses of aspirin, in elderly or volume depleted individuals.
- ramipril
ramipril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high doses of aspirin, in elderly or volume depleted individuals.
- regorafenib
regorafenib will increase the level or effect of dipyridamole by Other (see comment). Modify Therapy/Monitor Closely. Regorafenib likely inhibits BCRP (ABCG2) transport. Coadministration with a BCRP substrate may increase systemic exposure to the substrate and related toxicity.
- reishi
aspirin and reishi both increase anticoagulation. Use Caution/Monitor.
- reteplase
aspirin, reteplase. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- rifaximin
dipyridamole increases levels of rifaximin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor.
- rivaroxaban
aspirin, rivaroxaban. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. Both drugs have the potential to cause bleeding. The need for simultaneous use of low-dose aspirin (<100 mg/day) with anticoagulants are common for patients with cardiovascular disease, but may result in increased bleeding; monitor closely. Promptly evaluate any signs or symptoms of blood loss if treated concomitantly with low-dose aspirin. Avoid coadministration with chronic use of higher dose aspirin.
rivaroxaban, dipyridamole. Either increases effects of the other by anticoagulation. Use Caution/Monitor. Avoid concurrent use of rivaroxaban with other anticoagulants due to increased bleeding risk other than during therapeutic transition periods where patients should be observed closely. Monitor for signs/symptoms of blood loss. - rivastigmine
rivastigmine increases toxicity of aspirin by pharmacodynamic synergism. Use Caution/Monitor. Monitor patients for symptoms of active or occult gastrointestinal bleeding.
- safinamide
safinamide will increase the level or effect of dipyridamole by Other (see comment). Use Caution/Monitor. Safinamide and its major metabolite may inhibit intestinal BCRP. Monitor BCRP substrates for increased pharmacologic or adverse effects.
- sacubitril/valsartan
sacubitril/valsartan and aspirin both increase serum potassium. Use Caution/Monitor.
sacubitril/valsartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals.
aspirin decreases effects of sacubitril/valsartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect. - salicylates (non-asa)
aspirin and salicylates (non-asa) both increase anticoagulation. Use Caution/Monitor.
aspirin and salicylates (non-asa) both increase serum potassium. Use Caution/Monitor. - salmeterol
aspirin increases and salmeterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- salsalate
aspirin and salsalate both increase anticoagulation. Use Caution/Monitor.
aspirin and salsalate both increase serum potassium. Use Caution/Monitor. - saw palmetto
saw palmetto increases toxicity of aspirin by unspecified interaction mechanism. Use Caution/Monitor. May increase risk of bleeding.
- selexipag
dipyridamole will increase the level or effect of selexipag by Other (see comment). Use Caution/Monitor. Selexipag is a ABCG2 (BCRP) substrate. Monitor selexipag for increased pharmacologic or adverse effects when coadministered with ABCG2 (BCRP) inhibitors.
- selumetinib
dipyridamole and selumetinib both increase anticoagulation. Modify Therapy/Monitor Closely. An increased risk of bleeding may occur in patients taking a vitamin-K antagonist or an antiplatelet agent with selumetinib. Monitor for bleeding and INR or PT in patients coadministered a vitamin-K antagonist or an antiplatelet agent with selumetinib.
aspirin and selumetinib both increase anticoagulation. Modify Therapy/Monitor Closely. An increased risk of bleeding may occur in patients taking a vitamin-K antagonist or an antiplatelet agent with selumetinib. Monitor for bleeding and INR or PT in patients coadministered a vitamin-K antagonist or an antiplatelet agent with selumetinib. - sertraline
sertraline, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- sofosbuvir/velpatasvir
sofosbuvir/velpatasvir will increase the level or effect of dipyridamole by Other (see comment). Use Caution/Monitor. Velpatasvir is an inhibitor of the drug transporter BCRP. Coadministration may increase systemic exposure of drugs that are BCRP substrates.
- Siberian ginseng
aspirin and Siberian ginseng both increase anticoagulation. Use Caution/Monitor.
- silodosin
aspirin decreases effects of silodosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- sodium picosulfate/magnesium oxide/anhydrous citric acid
aspirin, sodium picosulfate/magnesium oxide/anhydrous citric acid. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May be associated with fluid and electrolyte imbalances.
- sodium sulfate/?magnesium sulfate/potassium chloride
sodium sulfate/?magnesium sulfate/potassium chloride increases toxicity of aspirin by Other (see comment). Use Caution/Monitor. Comment: Coadministration with medications that cause fluid and electrolyte abnormalities may increase the risk of adverse events of seizure, arrhythmias, and renal impairment.
- sodium sulfate/potassium sulfate/magnesium sulfate
sodium sulfate/potassium sulfate/magnesium sulfate increases toxicity of aspirin by Other (see comment). Use Caution/Monitor. Comment: Coadministration with medications that cause fluid and electrolyte abnormalities may increase the risk of adverse events of seizure, arrhythmias, and renal impairment.
- sotalol
sotalol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of sotalol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - sparsentan
aspirin and sparsentan both increase nephrotoxicity and/or ototoxicity. Use Caution/Monitor. Coadministration of NSAIDS, including selective COX-2 inhibitors, may result in deterioration of kidney function (eg, possible kidney failure). Monitor for signs of worsening renal function with concomitant use with NSAIDs.
- spironolactone
spironolactone and aspirin both increase serum potassium. Modify Therapy/Monitor Closely.
aspirin decreases effects of spironolactone by unspecified interaction mechanism. Use Caution/Monitor. When used concomitantly, spironolactone dose may need to be titrated to higher maintenance dose and the patient should be observed closely to determine if the desired effect is obtained. - stiripentol
stiripentol will increase the level or effect of dipyridamole by Other (see comment). Modify Therapy/Monitor Closely. Stiripentol is a BCRP transport inhibitor. Consider dosage reduction for BCRP substrates if adverse effects are experienced when coadministered.
- succinylcholine
aspirin and succinylcholine both increase serum potassium. Use Caution/Monitor.
- sulfamethoxazole
aspirin, sulfamethoxazole. Either increases effects of the other by plasma protein binding competition. Use Caution/Monitor. Due to high protein binding capacity of both drugs, one may displace the other when coadministered leading to an enhanced effect of the displaced drug; risk is low with low dose aspirin.
- sulfasalazine
aspirin and sulfasalazine both increase anticoagulation. Use Caution/Monitor.
aspirin and sulfasalazine both increase serum potassium. Use Caution/Monitor. - sulindac
aspirin and sulindac both increase anticoagulation. Use Caution/Monitor.
aspirin and sulindac both increase serum potassium. Use Caution/Monitor. - tafamidis
tafamidis will increase the level or effect of dipyridamole by Other (see comment). Use Caution/Monitor. Tafamidis inhibits breast cancer resistant protein (BCRP) in vitro and may increase exposure of BCRP substrates following tafamidis or tafamidis meglumine administration. Dosage adjustment of these BCRP substrates may be necessary.
- tafamidis meglumine
tafamidis meglumine will increase the level or effect of dipyridamole by Other (see comment). Use Caution/Monitor. Tafamidis inhibits breast cancer resistant protein (BCRP) in vitro and may increase exposure of BCRP substrates following tafamidis or tafamidis meglumine administration. Dosage adjustment of these BCRP substrates may be necessary.
- tafluprost
tafluprost, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).
- telmisartan
telmisartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of telmisartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
telmisartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - temocillin
temocillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
temocillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - tenecteplase
aspirin, tenecteplase. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- terazosin
aspirin decreases effects of terazosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- terbutaline
aspirin increases and terbutaline decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- ticagrelor
aspirin, ticagrelor. Other (see comment). Use Caution/Monitor. Comment: Maintenance doses of aspirin above 100 mg decreases effectiveness of ticagrelor. Therefore, after the initial loading dose of aspirin (usually 325 mg), use ticagrelor with a maintenance dose of aspirin of 75-100 mg.
ticagrelor, dipyridamole. Either increases effects of the other by anticoagulation. Use Caution/Monitor. Increased risk of bleeding during concomitant use of medications that increase potential for bleeding. - ticarcillin
ticarcillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
ticarcillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - vorapaxar
dipyridamole, vorapaxar. Either increases effects of the other by anticoagulation. Use Caution/Monitor. Coadministration of anticoagulants, antiplatelets, or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding.
- timolol
timolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of timolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - tirofiban
aspirin, tirofiban. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- tobramycin inhaled
tobramycin inhaled and aspirin both increase nephrotoxicity and/or ototoxicity. Modify Therapy/Monitor Closely. Avoid concurrent or sequential use to decrease risk for ototoxicity
- tolazamide
aspirin increases effects of tolazamide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.
- tolbutamide
aspirin increases effects of tolbutamide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.
- tolfenamic acid
aspirin and tolfenamic acid both increase anticoagulation. Use Caution/Monitor.
aspirin and tolfenamic acid both increase serum potassium. Use Caution/Monitor. - tolmetin
aspirin and tolmetin both increase anticoagulation. Use Caution/Monitor.
aspirin and tolmetin both increase serum potassium. Use Caution/Monitor. - tolvaptan
aspirin and tolvaptan both increase serum potassium. Use Caution/Monitor.
- torsemide
aspirin increases and torsemide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- trandolapril
trandolapril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly and volume depleted.
- travoprost ophthalmic
travoprost ophthalmic, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).
- trazodone
trazodone, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- triamcinolone acetonide injectable suspension
aspirin, triamcinolone acetonide injectable suspension. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Aspirin in conjunction with corticosteroids in hypoprothrombinemia should used with caution. Clearance of salicylates may increase with concurrent use of corticosteroids.
- triamterene
triamterene and aspirin both increase serum potassium. Modify Therapy/Monitor Closely.
- valproic acid
aspirin increases levels of valproic acid by plasma protein binding competition. Use Caution/Monitor.
- valsartan
valsartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of valsartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
valsartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - venlafaxine
venlafaxine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- voclosporin
voclosporin, aspirin. Either increases toxicity of the other by nephrotoxicity and/or ototoxicity. Modify Therapy/Monitor Closely. Coadministration with drugs associated with nephrotoxicity may increase the risk for acute and/or chronic nephrotoxicity.
- vorapaxar
aspirin, vorapaxar. Either increases effects of the other by anticoagulation. Use Caution/Monitor. Coadministration of anticoagulants, antiplatelets, or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding.
aspirin, vorapaxar. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Additive antiplatelet effect may occur. - vortioxetine
aspirin, vortioxetine. Either increases effects of the other by anticoagulation. Use Caution/Monitor. Risk minimal with low-dose aspirin.
dipyridamole increases effects of vortioxetine by anticoagulation. Use Caution/Monitor. - warfarin
aspirin increases effects of warfarin by anticoagulation. Modify Therapy/Monitor Closely. Avoid coadministration of chronic high-dose aspirin. Aspirin's antiplatelet properties may increase anticoagulation effect of warfarin. The need for simultaneous use of low-dose aspirin and warfarin is common for patients with cardiovascular disease. .
dipyridamole, warfarin. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Drugs with antiplatelet properties may increase anticoagulation effect of warfarin. - zanubrutinib
aspirin, zanubrutinib. Either increases effects of the other by anticoagulation. Modify Therapy/Monitor Closely. Zanubrutinib-induced cytopenias increases risk of hemorrhage. Coadministration of zanubritinib with antiplatelets or anticoagulants may further increase this risk.
- zotepine
aspirin decreases effects of zotepine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
Minor (138)
- acebutolol
dipyridamole, acebutolol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- aceclofenac
aceclofenac will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- acemetacin
acemetacin will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- acetazolamide
aspirin will decrease the level or effect of acetazolamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- acyclovir
aspirin will increase the level or effect of acyclovir by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- alendronate
aspirin, alendronate. Either increases toxicity of the other by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of GI ulceration.
- aluminum hydroxide
aluminum hydroxide, aspirin. Mechanism: passive renal tubular reabsorption due to increased pH. Minor/Significance Unknown. Salicylate levels increased at moderate doses; salicylate levels decreased at large doses (d/t increased renal excretion of unchanged salicylic acid).
- amikacin
aspirin increases levels of amikacin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.
- aminohippurate sodium
aspirin will increase the level or effect of aminohippurate sodium by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- anamu
aspirin and anamu both increase anticoagulation. Minor/Significance Unknown.
- anastrozole
aspirin will decrease the level or effect of anastrozole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- ascorbic acid
ascorbic acid will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
aspirin decreases levels of ascorbic acid by increasing renal clearance. Minor/Significance Unknown.
ascorbic acid increases levels of aspirin by decreasing renal clearance. Minor/Significance Unknown. - atenolol
dipyridamole, atenolol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- balsalazide
aspirin will increase the level or effect of balsalazide by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- bendroflumethiazide
bendroflumethiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- betaxolol
dipyridamole, betaxolol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- bismuth subsalicylate
bismuth subsalicylate increases effects of aspirin by pharmacodynamic synergism. Minor/Significance Unknown.
- bisoprolol
dipyridamole, bisoprolol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- bumetanide
aspirin, bumetanide. Other (see comment). Minor/Significance Unknown. Comment: Salicylates are less likely than other NSAIDs to interact w/bumetanide.
- calcium carbonate
calcium carbonate, aspirin. Mechanism: passive renal tubular reabsorption due to increased pH. Minor/Significance Unknown. Salicylate levels increased at moderate doses; salicylate levels decreased at large doses (d/t increased renal excretion of unchanged salicylic acid).
- carvedilol
dipyridamole, carvedilol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- cefadroxil
cefadroxil will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- cefamandole
cefamandole will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- cefepime
cefepime will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- cefixime
cefixime will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- cefpirome
cefpirome will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- cefprozil
cefprozil will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- ceftazidime
ceftazidime will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- ceftibuten
ceftibuten will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- celecoxib
aspirin will increase the level or effect of celecoxib by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- celiprolol
dipyridamole, celiprolol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- cephalexin
cephalexin will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- ceritinib
aspirin will decrease the level or effect of ceritinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- chlorothiazide
chlorothiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- chlorpropamide
aspirin will increase the level or effect of chlorpropamide by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
aspirin increases effects of chlorpropamide by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate. - chlorthalidone
chlorthalidone will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- choline magnesium trisalicylate
aspirin will increase the level or effect of choline magnesium trisalicylate by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- chromium
aspirin increases levels of chromium by unspecified interaction mechanism. Minor/Significance Unknown.
- cortisone
cortisone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- creatine
creatine, aspirin. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. (Theoretical interaction) Combination may have additive nephrotoxic effects.
- cyanocobalamin
aspirin decreases levels of cyanocobalamin by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.
- cyclopenthiazide
cyclopenthiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- cyclophosphamide
aspirin will decrease the level or effect of cyclophosphamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- danshen
aspirin and danshen both increase anticoagulation. Minor/Significance Unknown.
- deflazacort
deflazacort decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- devil's claw
aspirin and devil's claw both increase anticoagulation. Minor/Significance Unknown.
devil's claw, dipyridamole. pharmacodynamic synergism. Minor/Significance Unknown. May prolong bleeding time. Conflicting evidence.ÿ Use with caution. - dexamethasone
dexamethasone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- esmolol
dipyridamole, esmolol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- diclofenac
aspirin will increase the level or effect of diclofenac by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- diclofenac topical
diclofenac topical, aspirin. Either increases effects of the other by pharmacodynamic synergism. Minor/Significance Unknown. Although low, there is systemic exposure to diclofenac topical; theoretically, concomitant administration with systemic NSAIDS or aspirin may result in increased NSAID adverse effects.
- diflunisal
aspirin will increase the level or effect of diflunisal by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- diltiazem
diltiazem increases effects of aspirin by unknown mechanism. Minor/Significance Unknown. Enhanced antiplatelet activity.
- eplerenone
aspirin decreases effects of eplerenone by pharmacodynamic antagonism. Minor/Significance Unknown. NSAIDs decrease prostaglandin synthesis.
- ethanol
ethanol increases toxicity of aspirin by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of GI bleeding.
- etodolac
aspirin will increase the level or effect of etodolac by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- fenbufen
aspirin will increase the level or effect of fenbufen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- fenoprofen
aspirin will increase the level or effect of fenoprofen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- feverfew
aspirin decreases effects of feverfew by pharmacodynamic antagonism. Minor/Significance Unknown.
- fludrocortisone
fludrocortisone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- flurbiprofen
aspirin will increase the level or effect of flurbiprofen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- folic acid
aspirin decreases levels of folic acid by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.
- furosemide
aspirin decreases effects of furosemide by pharmacodynamic antagonism. Minor/Significance Unknown. NSAIDs decrease prostaglandin synthesis.
- ganciclovir
aspirin will increase the level or effect of ganciclovir by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- gentamicin
aspirin increases levels of gentamicin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.
- ginger
ginger, dipyridamole. pharmacodynamic synergism. Minor/Significance Unknown. May prolong bleeding time. Conflicting evidence. Use with caution.
- ginkgo biloba
ginkgo biloba, dipyridamole. pharmacodynamic synergism. Minor/Significance Unknown. May prolong bleeding time. Conflicting evidence.ÿ Use with caution.
- glimepiride
aspirin increases effects of glimepiride by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.
- glipizide
aspirin increases effects of glipizide by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.
- glyburide
aspirin increases effects of glyburide by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.
- horse chestnut seed
horse chestnut seed, dipyridamole. pharmacodynamic synergism. Minor/Significance Unknown. May prolong bleeding time. Theoretical. Use with caution.
- hydrochlorothiazide
hydrochlorothiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- hydrocortisone
hydrocortisone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- ibuprofen
aspirin will increase the level or effect of ibuprofen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- imidapril
aspirin decreases effects of imidapril by pharmacodynamic antagonism. Minor/Significance Unknown. NSAIDs decrease prostaglandin synthesis.
- indapamide
indapamide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- indomethacin
aspirin will increase the level or effect of indomethacin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- ketoprofen
aspirin will increase the level or effect of ketoprofen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- ketorolac
aspirin will increase the level or effect of ketorolac by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- ketorolac intranasal
aspirin will increase the level or effect of ketorolac intranasal by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- L-methylfolate
aspirin decreases levels of L-methylfolate by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.
- labetalol
dipyridamole, labetalol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- larotrectinib
aspirin will decrease the level or effect of larotrectinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- levoketoconazole
aspirin will decrease the level or effect of levoketoconazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- lornoxicam
aspirin will increase the level or effect of lornoxicam by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- meclofenamate
aspirin will increase the level or effect of meclofenamate by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- mefenamic acid
aspirin will increase the level or effect of mefenamic acid by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- meloxicam
aspirin will increase the level or effect of meloxicam by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- mesalamine
aspirin will increase the level or effect of mesalamine by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- methyclothiazide
methyclothiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- methylprednisolone
methylprednisolone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- metolazone
metolazone will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- metoprolol
dipyridamole, metoprolol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- nabumetone
aspirin will increase the level or effect of nabumetone by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- nadolol
dipyridamole, nadolol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- naproxen
aspirin will increase the level or effect of naproxen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- nebivolol
dipyridamole, nebivolol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- neomycin PO
aspirin increases levels of neomycin PO by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.
- noni juice
aspirin and noni juice both increase serum potassium. Minor/Significance Unknown.
- ofloxacin
ofloxacin, aspirin. Other (see comment). Minor/Significance Unknown. Comment: Risk of CNS stimulation/seizure. Mechanism: Displacement of GABA from receptors in brain.
- oxaprozin
aspirin will increase the level or effect of oxaprozin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- parecoxib
aspirin will increase the level or effect of parecoxib by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- paromomycin
aspirin increases levels of paromomycin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.
- penbutolol
dipyridamole, penbutolol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- penicillin VK
penicillin VK, aspirin. Either increases levels of the other by decreasing renal clearance. Minor/Significance Unknown.
- pentazocine
aspirin, pentazocine. Either increases toxicity of the other by pharmacodynamic synergism. Minor/Significance Unknown. Possible risk of renal papillary necrosis w/chronic Tx.
- pindolol
dipyridamole, pindolol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- piperacillin
piperacillin, aspirin. Either increases effects of the other by receptor binding competition. Minor/Significance Unknown. Salicylic acid could be displaced from protein binding sites or it could itself displace other protein-bound drugs and result in an enhanced effect of the displaced drug.
- piroxicam
aspirin will increase the level or effect of piroxicam by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- prednisolone
prednisolone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- prednisone
prednisone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- propranolol
dipyridamole, propranolol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- rose hips
rose hips will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
aspirin decreases levels of rose hips by increasing renal clearance. Minor/Significance Unknown.
rose hips increases levels of aspirin by decreasing renal clearance. Minor/Significance Unknown. - salicylates (non-asa)
aspirin will increase the level or effect of salicylates (non-asa) by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- salsalate
aspirin will increase the level or effect of salsalate by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- sodium bicarbonate
sodium bicarbonate, aspirin. Mechanism: passive renal tubular reabsorption due to increased pH. Minor/Significance Unknown. Salicylate levels increased at moderate doses; salicylate levels decreased at large doses (d/t increased renal excretion of unchanged salicylic acid).
- sodium citrate/citric acid
sodium citrate/citric acid, aspirin. Mechanism: passive renal tubular reabsorption due to increased pH. Minor/Significance Unknown. Salicylate levels increased at moderate doses; salicylate levels decreased at large doses (d/t increased renal excretion of unchanged salicylic acid).
- sotalol
dipyridamole, sotalol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- stiripentol
aspirin will decrease the level or effect of stiripentol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- streptomycin
aspirin increases levels of streptomycin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.
- sulfadiazine
aspirin increases levels of sulfadiazine by unspecified interaction mechanism. Minor/Significance Unknown.
- sulfasalazine
aspirin will increase the level or effect of sulfasalazine by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- sulfisoxazole
aspirin increases levels of sulfisoxazole by unspecified interaction mechanism. Minor/Significance Unknown.
- sulindac
aspirin will increase the level or effect of sulindac by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- teniposide
aspirin increases levels of teniposide by unspecified interaction mechanism. Minor/Significance Unknown.
- tiludronate
aspirin decreases levels of tiludronate by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.
- timolol
dipyridamole, timolol. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. Risk of bradycardia.
- tobramycin
aspirin increases levels of tobramycin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.
- tolazamide
aspirin increases effects of tolazamide by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.
- tolbutamide
aspirin increases effects of tolbutamide by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.
- tolfenamic acid
aspirin will increase the level or effect of tolfenamic acid by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- tolmetin
aspirin will increase the level or effect of tolmetin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- triamcinolone acetonide injectable suspension
triamcinolone acetonide injectable suspension decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- triamterene
triamterene, aspirin. Other (see comment). Minor/Significance Unknown. Comment: Risk of acute renal failure. Mechanism: NSAIDs decrease prostaglandin synthesis, which normally protect against nephrotoxicity.
aspirin increases toxicity of triamterene by pharmacodynamic antagonism. Minor/Significance Unknown. NSAIDs decrease prostaglandin synthesis, increasing the risk of nephrotoxicity. - valganciclovir
aspirin will increase the level or effect of valganciclovir by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- vancomycin
aspirin increases levels of vancomycin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in neonates.
- verapamil
verapamil increases effects of aspirin by unknown mechanism. Minor/Significance Unknown. Enhanced antiplatelet activity.
- verteporfin
dipyridamole decreases effects of verteporfin by pharmacodynamic antagonism. Minor/Significance Unknown.
- willow bark
aspirin will increase the level or effect of willow bark by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
willow bark increases effects of aspirin by pharmacodynamic synergism. Minor/Significance Unknown. Willow bark contains salicylic acid, which may have additive effects/toxicity with salicylate drugs.
Adverse Effects
>10%
Headache (10-39%)
Dyspepsia (4-18%)
Abdominal pain (4-18%)
Nausea (6-16%)
Diarrhea (13%)
1-10%
Vomiting (3-8%)
Pain (6%)
Fatigue (6%)
Arthralgia (5%)
Back pain (5%)
Hemorrhage, nonspecific (3%)
Accidental injury (3%)
Epistaxis (3%)
Amnesia (3%)
Arthritis (2%)
Melena (2%)
Asthenia (2%)
Convulsions (2%)
Neoplasm, nonspecific (2%)
Anemia (2%)
Rectal hemorrhage (2%)
Malaise (2%)
Cardiac failure (2%)
Coughing (2%)
Purpura (1%)
GI hemorrhage (1%)
Anorexia (1%)
Somnolence (1%)
Myalgia (1%)
Arthrosis (1%)
Confusion (1%)
Hemorrhoids (1%)
Syncope (1%)
Upper respiratory tract infection (1%)
Postmarketing Reports
Body as whole: Hypothermia, chest pain
Cardiovascular: Angina pectoris, tachycardia, palpitation
CNS: Cerebral edema, dizziness, cerebral hemorrhage, intracranial hemorrhage, subarachnoid hemorrhage
Fluid and electrolyte: Hyperkalemia, metabolic acidosis, respiratory alkalosis, hypokalemia
Psychiatric Disorders: Confusion, agitation
GI: Pancreatitis, Reye syndrome, hematemesis, gastritis, ulceration and perforation, hemorrhage rectum, melena, GI hemorrhage
General: Hearing loss, anorexia, migraine
Immune: Hypersensitivity, acute anaphylaxis, laryngeal edema
Hepatic: Hepatitis, hepatic failure, cholelithiasis, jaundice, hepatic function abnormal
Musculoskeletal: Rhabdomyolysis
Metabolic: Hypoglycemia, dehydration
Reproductive: Prolonged pregnancy and labor, stillbirths, lower-birth-weight infants, antepartum and postpartum bleeding
Respiratory: Tachypnea, dyspnea
Skin: Rash, alopecia, angioedema, Stevens-Johnson syndrome, skin hemorrhage (eg, bruising, ecchymosis, hematoma), pruritus, urticaria, drug reaction with eosinophilia and systemic symptoms (DRESS)
Urogenital: Interstitial nephritis, papillary necrosis, proteinuria, renal insufficiency and failure, hematuria
Platelet, bleeding and clotting disorders: Hematoma, gingival bleeding, epistaxis, purpura, aplastic anemia, pancytopenia, thrombocytosis, allergic vasculitis, prothrombin time (PT) prolongation, disseminated intravascular coagulation (DIC), coagulopathy, thrombocytopenia
Vascular (Extracardiac) Disorders:Flushing
Warnings
Contraindications
Hypersensitivity to aspirin, dipyridamole, or NSAIDs
Syndrome of asthma, rhinitis, and nasal polyps
Children younger than 16 years with viral infections (risk of Reye syndrome)
Cautions
Discontinue if tinnitus or impaired hearing occurs
Use with caution in patients with cardiovascular or GI diseases or bleeding disorders
Avoid use in patients with history of peptic ulcer disease
Risk of precipitation of chest pain in patients with underlying coronary artery disease (CAD)
Dosage in drug may not be adequate in patients with history of stroke or TIA for whom aspirin is indicated to prevent recurrent MI or angina pectoris
Preexisting hypotension may be exacerbated by peripheral vasodilation
Increased bleeding risk when drug coadministered with antiplatelet agents (eg, anagrelide), anticoagulants (eg, heparin), fibrinolytic agents, or NSAIDs (in long-term use)
When possible, surgical patients should not receive aspirin 2 weeks before undergoing a surgical procedure
Increased bleeding risk with chronic heavy alcohol use (>3 alcoholic drinks/day)
Risk of elevated liver function test values or hepatic failure with dipyridamole administration
Intake of drug within 48 hours prior to stress testing with intravenous dipyridamole or other adenosinergic agents may increase risk for cardiovascular side effects of and may impair sensitivity of test
Pregnancy & Lactation
Pregnancy
Available data from published studies and postmarketing experience with use during pregnancy have not identified clear association between drug use and major birth defects, miscarriage, or adverse maternal or fetal outcomes drug combination contains low-dose aspirin which is an NSAID
Increases risk for bleeding; maternal use of high-dose aspirin can result in excessive blood loss at delivery, prolonged gestation, prolonged labor, intracranial hemorrhage in premature infants, low birth weight, stillbirth, and neonatal death
Animal data
- In animal reproduction studies, there were adverse developmental effects with administration of aspirin in rats and rabbits at doses about 66 and 44 times, respectively, the human exposure at maximum recommended daily dose; reproduction studies with dipyridamole in mice, rabbits, and rats have revealed no evidence of harm to fetus up to doses about 25 times maximum recommended daily human dose; nonclinical data are suggestive of possible potentiation of aspirin-related fetal toxicity when combined with dipyridamole
Lactation
Based on data from a clinical lactation study in breastfeeding women taking low-dose aspirin, the metabolite salicylic acid is present in human milk in low levels; dipyridamole is also present in human milk; there is no information on the effects of drug combination components on breastfed infant or on milk production; there is insufficient information to determine effects of aspirin on breastfed infant and no information on effects of aspirin on milk production; developmental and health benefits of breastfeeding should be considered along with mother’s clinical need for therapy and any potential adverse effects on breastfed child from therapy or from underlying maternal condition
Pregnancy Categories
A: Generally acceptable. Controlled studies in pregnant women show no evidence of fetal risk.
B: May be acceptable. Either animal studies show no risk but human studies not available or animal studies showed minor risks and human studies done and showed no risk. C: Use with caution if benefits outweigh risks. Animal studies show risk and human studies not available or neither animal nor human studies done. D: Use in LIFE-THREATENING emergencies when no safer drug available. Positive evidence of human fetal risk. X: Do not use in pregnancy. Risks involved outweigh potential benefits. Safer alternatives exist. NA: Information not available.Pharmacology
Mechanism of Action
Aspirin: Inhibits platelet cyclooxygenase and thus inhibits generation of thromboxane A2, a powerful inducer of platelet aggregation and vasoconstriction, leading to abrogation of platelet aggregation
Dipyridamole: Inhibits uptake of adenosine into platelets, endothelial cells, and erythrocytes
Combination of aspirin and dipyridamole produces additive antiplatelet effects
Absorption
Peak plasma levels: Dipyridamole, 2 hr
Distribution
Protein bound: Dipyridamole, 99%
Vd: Dipyridamole, 92 L
Metabolism
Metabolized by liver: Dipyridamole
Elimination
Dipyridamole: Feces (95%), urine (5%)
Images
Formulary
Adding plans allows you to compare formulary status to other drugs in the same class.
To view formulary information first create a list of plans. Your list will be saved and can be edited at any time.
Adding plans allows you to:
- View the formulary and any restrictions for each plan.
- Manage and view all your plans together – even plans in different states.
- Compare formulary status to other drugs in the same class.
- Access your plan list on any device – mobile or desktop.