Dosing & Uses
Dosage Forms & Strengths
asprin/caffeine
tablet
- 250mg/65mg
- 400mg/32mg
- 500mg/32mg
- 500mg/32.5mg
caplet
- 250mg/65mg
tablet, effervescent
- 500mg/65mg
powder
- 845mg/65mg
- 1000mg/65mg
quick release crystals
- 850mg/65mg
Analgesia
1-2 tablets/caplet/powders PO q4-6hr PRN
Products vary, check specific labeling for each
Hangover
The brand Blowfish is indicated for temporary relief of minor aches and pains associated with a hangover, helps restore mental alertness or wakefulness when fatigue or drowsiness is associated with a hangover (also indicated for headaches and other mild analgesic needs)
Blowfish: Dissolve 1,000 mg/120 mg (2 effervescent tabs) in 16 oz of water and drink q6hr prn; not to exceed 8 tablets/24 hr
Each effervescent tablet of Blowfish contains 500 mg of aspirin and 60 mg of caffeine
≥60 years: Dissolve 2 effervescent tabs in 16 oz of water and drink contents, may repeat dose after 6 hr; not to exceed 4 tabs/24 hr
Safety and efficacy not established
Interactions
Interaction Checker
No Results

Contraindicated
Serious - Use Alternative
Significant - Monitor Closely
Minor

Contraindicated (7)
- abrocitinib
abrocitinib and aspirin both increase anticoagulation. Contraindicated. Antiplatelet drugs, except for low-dose aspirin (=81 mg qDay), during the first 3 months of treatment are contraindicated.
- dichlorphenamide
dichlorphenamide increases levels of aspirin by unknown mechanism. Contraindicated. Coadministration of dichlorphenamide with high-dose aspirin may increase salicylate levels. Anorexia, tachypnea, lethargy, and coma reported.
- fezolinetant
caffeine will increase the level or effect of fezolinetant by affecting hepatic enzyme CYP1A2 metabolism. Contraindicated. Fezolinetant AUC and peak plasma concentration are increased if coadministered with drugs that are weak, moderate, or strong CYP1A2 inhibitors
- isocarboxazid
isocarboxazid increases effects of caffeine by pharmacodynamic synergism. Contraindicated. Risk of acute hypertensive episode.
- linezolid
linezolid increases effects of caffeine by pharmacodynamic synergism. Contraindicated. Risk of acute hypertensive episode.
- mifepristone
aspirin, mifepristone. Other (see comment). Contraindicated. Comment: Aspirin induced antiplatelet activity may induce excessive bleeding after an abortion w/mifepristone (RU 486).
- phenelzine
phenelzine increases effects of caffeine by pharmacodynamic synergism. Contraindicated. Risk of acute hypertensive episode.
Serious - Use Alternative (29)
- benazepril
aspirin, benazepril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- bupropion
caffeine increases toxicity of bupropion by unspecified interaction mechanism. Avoid or Use Alternate Drug. May lower seizure threshold; keep bupropion dose as low as possible.
- caplacizumab
caplacizumab, aspirin. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug.
- captopril
aspirin, captopril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- dipyridamole
caffeine decreases effects of dipyridamole by pharmacodynamic antagonism. Contraindicated.
- enalapril
aspirin, enalapril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- fosinopril
aspirin, fosinopril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- givosiran
givosiran will increase the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of sensitive CYP1A2 substrates with givosiran. If unavoidable, decrease the CYP1A2 substrate dosage in accordance with approved product labeling.
- ibuprofen
ibuprofen decreases effects of aspirin by Other (see comment). Avoid or Use Alternate Drug. Comment: Ibuprofen decreases the antiplatelet effects of low-dose aspirin by blocking the active site of platelet cyclooxygenase. Administer ibuprofen 8 h before aspirin or at least 2-4 h after aspirin. The effect of other NSAIDs on aspirin is not established.
ibuprofen increases toxicity of aspirin by anticoagulation. Avoid or Use Alternate Drug. increases risk of bleeding. - ibuprofen IV
ibuprofen IV increases toxicity of aspirin by anticoagulation. Avoid or Use Alternate Drug. increases risk of bleeding.
ibuprofen IV decreases effects of aspirin by Other (see comment). Avoid or Use Alternate Drug. Comment: Ibuprofen decreases the antiplatelet effects of low-dose aspirin by blocking the active site of platelet cyclooxygenase. Administer ibuprofen 8 h before aspirin or at least 2-4 h after aspirin. The effect of other NSAIDs on aspirin is not established. - iobenguane I 131
caffeine will decrease the level or effect of iobenguane I 131 by Other (see comment). Avoid or Use Alternate Drug. Based on the mechanism of action of iobenguane, drugs that reduce catecholamine uptake or that deplete catecholamine stores may interfere with iobenguane uptake into cells, and thus, reduce iobenguane efficacy. Discontinue interfering drugs for at least 5 half-lives before administration of either the dosimetry or an iobenguane dose. Do not administer these drugs until at least 7 days after each iobenguane dose.
- ketorolac
aspirin, ketorolac. Either increases toxicity of the other by pharmacodynamic synergism. Contraindicated.
- ketorolac intranasal
aspirin, ketorolac intranasal. Either increases toxicity of the other by pharmacodynamic synergism. Contraindicated.
- lesinurad
aspirin decreases effects of lesinurad by unspecified interaction mechanism. Avoid or Use Alternate Drug. Aspirin at doses >325 mg/day may decrease lesinurad efficacy. Aspirin doses 325 mg/day or less (ie, for cardiovascular event prophylaxis) does not decrease lesinurad efficacy and can be coadministered.
- lisinopril
aspirin, lisinopril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- macimorelin
aspirin, macimorelin. unspecified interaction mechanism. Avoid or Use Alternate Drug. Drugs that directly affect the pituitary secretion of growth hormone (GH) may impact the accuracy of the macimorelin diagnostic test. Allow sufficient washout time of drugs affecting GH release before administering macimorelin. .
- measles, mumps, rubella and varicella vaccine, live
aspirin, measles, mumps, rubella and varicella vaccine, live. Mechanism: unspecified interaction mechanism. Avoid or Use Alternate Drug. Risk of Reye's Syndrome with combination; avoid salicylate use for 6 wks after vaccination.
- methotrexate
aspirin increases levels of methotrexate by decreasing renal clearance. Avoid or Use Alternate Drug. Caution should be exercised when salicylates are given in combination with methotrexate. Risk for drug interactions with methotrexate is greatest during high-dose methotrexate therapy, it has been recommended that any of these drugs be used cautiously with methotrexate even when methotrexate is used in low doses.
- mifepristone
aspirin will decrease the level or effect of mifepristone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- mitotane
aspirin will decrease the level or effect of mitotane by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- moexipril
aspirin, moexipril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- ozanimod
ozanimod increases toxicity of caffeine by sympathetic (adrenergic) effects, including increased blood pressure and heart rate. Avoid or Use Alternate Drug. Because the active metabolite of ozanimod inhibits MAO-B in vitro, there is a potential for serious adverse reactions, including hypertensive crisis. Therefore, coadministration of ozanimod with drugs that can increase norepinephrine or serotonin is not recommended. Monitor for hypertension with concomitant use.
- pemetrexed
aspirin increases levels of pemetrexed by unspecified interaction mechanism. Avoid or Use Alternate Drug. Interrupt dosing in all patients taking NSAIDs with long elimination half-lives for at least 5d before, the day of, and 2d following pemetrexed administration. If coadministration of an NSAID is necessary, closely monitor patients for toxicity, especially myelosuppression, renal toxicity, and GI toxicity.
- perindopril
aspirin, perindopril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- probenecid
aspirin decreases effects of probenecid by acidic (anionic) drug competition for renal tubular clearance. Avoid or Use Alternate Drug. Aspirin decreases uricosuric action of probenecid.
- quinapril
aspirin, quinapril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- ramipril
aspirin, ramipril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.
- regadenoson
caffeine decreases effects of regadenoson by pharmacodynamic antagonism. Avoid or Use Alternate Drug. Avoid methylxanthines for 12 hours before regadenoson administration.
- ticlopidine
aspirin increases effects of ticlopidine by pharmacodynamic synergism. Avoid or Use Alternate Drug. Enhanced risk of hemorrhage.
Monitor Closely (413)
- abciximab
aspirin, abciximab. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- acalabrutinib
acalabrutinib increases effects of aspirin by anticoagulation. Modify Therapy/Monitor Closely. Coadministration of acalabrutinib with antiplatelets or anticoagulants may further increase risk of hemorrhage. Monitor for signs of bleeding and consider the benefit-risk of withholding acalabrutinib for 3-7 days presurgery and postsurgery depending upon the type of surgery and the risk of bleeding.
- acebutolol
acebutolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of acebutolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - aceclofenac
aceclofenac and aspirin both increase anticoagulation. Use Caution/Monitor.
aceclofenac and aspirin both increase serum potassium. Use Caution/Monitor. - acemetacin
acemetacin and aspirin both increase anticoagulation. Use Caution/Monitor.
acemetacin and aspirin both increase serum potassium. Use Caution/Monitor. - acetazolamide
acetazolamide, aspirin. Either increases levels of the other by Other (see comment). Use Caution/Monitor. Comment: Carbonic anhydrase inhibitors (CAIs) and salicylates inhibit each other's renal tubular secretion, resulting in increased plasma levels. CAIs also shift salicylates from plasma to the CNS, leading to potential neurotoxicity.
acetazolamide, aspirin. Mechanism: passive renal tubular reabsorption due to increased pH. Use Caution/Monitor. Salicylate levels increased at moderate doses; risk of CNS toxicity. Salicylate levels decreased at large doses (d/t increased renal excretion of unchanged salicylic acid). - agrimony
aspirin and agrimony both increase anticoagulation. Use Caution/Monitor.
- albuterol
aspirin increases and albuterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
albuterol and caffeine both decrease sedation. Use Caution/Monitor. - alfalfa
aspirin and alfalfa both increase anticoagulation. Use Caution/Monitor.
- alfentanil
alfentanil increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- alfuzosin
aspirin decreases effects of alfuzosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- aliskiren
aspirin will decrease the level or effect of aliskiren by Other (see comment). Use Caution/Monitor. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function, coadministration of NSAIDs with drugs that affect RAAS may increase the risk of renal impairment (including acute renal failure) and cause loss of antihypertensive effect. Monitor renal function periodically.
- alprazolam
alprazolam increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- alteplase
aspirin, alteplase. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- American ginseng
aspirin and American ginseng both increase anticoagulation. Use Caution/Monitor.
- amiloride
amiloride and aspirin both increase serum potassium. Modify Therapy/Monitor Closely.
- amitriptyline
amitriptyline increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- amobarbital
amobarbital increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- amoxapine
amoxapine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- amoxicillin
amoxicillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
amoxicillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - ampicillin
ampicillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
- anagrelide
aspirin, anagrelide. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; increases risk of bleeding; monitor closely.
anagrelide, aspirin. Either increases toxicity of the other by Mechanism: pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; increases risk of bleeding; monitor closely. - antithrombin alfa
antithrombin alfa and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin, antithrombin alfa. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - antithrombin III
antithrombin III and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin, antithrombin III. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - apixaban
aspirin and apixaban both increase anticoagulation. Modify Therapy/Monitor Closely. Both drugs have the potential to cause bleeding. The need for simultaneous use of low-dose aspirin (<100 mg/day) with anticoagulants are common for patients with cardiovascular disease, but may result in increased bleeding; monitor closely. Promptly evaluate any signs or symptoms of blood loss if treated concomitantly with low-dose aspiriin. Avoid coadministration with chronic use of higher dose aspirin. In 1 trial (APPRAISE-2), therapy was terminated because of significantly increased bleeding when apixaban was administered with dual antiplatelet therapy (eg, aspirin plus clopidogrel) compared with single antiplatelet treatment
- arformoterol
aspirin increases and arformoterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
arformoterol and caffeine both decrease sedation. Use Caution/Monitor. - argatroban
argatroban and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin, argatroban. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - aripiprazole
aripiprazole increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- armodafinil
armodafinil and caffeine both decrease sedation. Use Caution/Monitor.
- asenapine
aspirin decreases effects of asenapine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- atenolol
atenolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of atenolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - azelastine
azelastine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- azficel-T
azficel-T, aspirin. Other (see comment). Use Caution/Monitor. Comment: Patients taking aspirin may experience increased bruising or bleeding at biopsy and/or injection sites. Concomitant use of aspirin is not recommended. .
- azilsartan
aspirin, azilsartan. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals.
aspirin decreases effects of azilsartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect. - belladonna and opium
belladonna and opium increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- bemiparin
bemiparin and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
- benazepril
benazepril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.
- bendroflumethiazide
aspirin increases and bendroflumethiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- benperidol
benperidol increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- benzphetamine
caffeine and benzphetamine both decrease sedation. Use Caution/Monitor.
- betaxolol
betaxolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of betaxolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - betrixaban
aspirin, betrixaban. Either increases levels of the other by anticoagulation. Use Caution/Monitor.
- bimatoprost
bimatoprost, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).
- bisoprolol
bisoprolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of bisoprolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - bivalirudin
bivalirudin and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin, bivalirudin. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - brinzolamide
brinzolamide, aspirin. Either increases levels of the other by Other (see comment). Use Caution/Monitor. Comment: Carbonic anhydrase inhibitors (CAIs) and salicylates inhibit each other's renal tubular secretion, resulting in increased plasma levels. CAIs also shift salicylates from plasma to the CNS, leading to potential neurotoxicity.
- brompheniramine
brompheniramine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- bumetanide
aspirin increases and bumetanide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
aspirin decreases effects of bumetanide by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis. - buprenorphine buccal
buprenorphine buccal increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- butabarbital
butabarbital increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- butalbital
butalbital increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- butorphanol
butorphanol increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- candesartan
candesartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of candesartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
candesartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - captopril
captopril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, elderly or volume depleted individuals.
- carbenoxolone
aspirin increases and carbenoxolone decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- carbinoxamine
carbinoxamine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- carvedilol
carvedilol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of carvedilol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - celecoxib
aspirin and celecoxib both increase anticoagulation. Use Caution/Monitor.
aspirin and celecoxib both increase serum potassium. Use Caution/Monitor. - celiprolol
celiprolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of celiprolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - chloral hydrate
chloral hydrate increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- chlordiazepoxide
chlordiazepoxide increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- chlorothiazide
aspirin increases and chlorothiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- chlorpheniramine
chlorpheniramine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- chlorpromazine
chlorpromazine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- chlorpropamide
aspirin increases effects of chlorpropamide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.
- chlorthalidone
aspirin increases and chlorthalidone decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- choline magnesium trisalicylate
aspirin and choline magnesium trisalicylate both increase anticoagulation. Use Caution/Monitor.
aspirin and choline magnesium trisalicylate both increase serum potassium. Use Caution/Monitor. - cilostazol
aspirin, cilostazol. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- cinnamon
aspirin and cinnamon both increase anticoagulation. Use Caution/Monitor.
- cinnarizine
cinnarizine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- ciprofloxacin
aspirin decreases levels of ciprofloxacin by Other (see comment). Use Caution/Monitor. Comment: Buffered aspirin may decrease absorption of quinolones. Consider administering 2 hr before or 6 hr after, buffered aspirin administration.
ciprofloxacin will increase the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. The hepatic metabolism of caffeine may be decreased by ciprofloxacin; pharmacologic effects of caffeine may be increased. - citalopram
citalopram, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. If possible, avoid concurrent use.
- clemastine
clemastine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- clomipramine
clomipramine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. Clomipramine inhib. serotonin uptake by platelets.
clomipramine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor. - clonazepam
clonazepam increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- clopidogrel
aspirin, clopidogrel. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- clorazepate
clorazepate increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- clozapine
clozapine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- codeine
codeine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- collagenase clostridium histolyticum
aspirin increases toxicity of collagenase clostridium histolyticum by anticoagulation. Use Caution/Monitor. Collagenase clostridium histolyticum has high incidence of ecchymosis/contusion at injection site; avoid concomitant anticoagulants (except for low-dose aspirin, ie, up to 150 mg/day).
- cordyceps
aspirin and cordyceps both increase anticoagulation. Use Caution/Monitor.
- cortisone
aspirin, cortisone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- cyclizine
cyclizine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- cyclopenthiazide
aspirin increases and cyclopenthiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- cyproheptadine
cyproheptadine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- dabigatran
dabigatran and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely. Both drugs have the potential to cause bleeding. The need for simultaneous use of low-dose aspirin (<100 mg/day) with anticoagulants are common for patients with cardiovascular disease, but may result in increased bleeding; monitor closely. Promptly evaluate any signs or symptoms of blood loss if treated concomitantly with low-dose aspirin. Avoid coadministration with chronic use of higher dose aspirin
- dalteparin
dalteparin and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin, dalteparin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - deferasirox
deferasirox, aspirin. Other (see comment). Use Caution/Monitor. Comment: Combination may increase GI bleeding, ulceration and irritation. Use with caution.
deferasirox increases levels of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. - defibrotide
defibrotide increases effects of aspirin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Defibrotide may enhance effects of platelet inhibitors.
- desipramine
desipramine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- deflazacort
aspirin, deflazacort. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- desirudin
aspirin, desirudin. Either increases levels of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- dexamethasone
aspirin, dexamethasone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- dexchlorpheniramine
dexchlorpheniramine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- dexfenfluramine
caffeine and dexfenfluramine both decrease sedation. Use Caution/Monitor.
- dexmedetomidine
dexmedetomidine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- dexmethylphenidate
caffeine and dexmethylphenidate both decrease sedation. Use Caution/Monitor.
- dextroamphetamine
caffeine and dextroamphetamine both decrease sedation. Use Caution/Monitor.
- dextromoramide
dextromoramide increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- diamorphine
diamorphine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- diclofenac
aspirin and diclofenac both increase anticoagulation. Use Caution/Monitor.
aspirin and diclofenac both increase serum potassium. Use Caution/Monitor. - dicloxacillin
dicloxacillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
- diethylpropion
caffeine and diethylpropion both decrease sedation. Use Caution/Monitor.
- difenoxin hcl
difenoxin hcl increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- diflunisal
aspirin and diflunisal both increase anticoagulation. Use Caution/Monitor.
aspirin and diflunisal both increase serum potassium. Use Caution/Monitor. - digoxin
aspirin and digoxin both increase serum potassium. Use Caution/Monitor.
- dimenhydrinate
dimenhydrinate increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- diphenhydramine
diphenhydramine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- diphenoxylate hcl
diphenoxylate hcl increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- dipipanone
dipipanone increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- dipyridamole
aspirin, dipyridamole. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- dobutamine
dobutamine and caffeine both decrease sedation. Use Caution/Monitor.
aspirin increases and dobutamine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor. - dong quai
aspirin and dong quai both increase anticoagulation. Use Caution/Monitor.
- dopamine
caffeine and dopamine both decrease sedation. Use Caution/Monitor.
- dopexamine
aspirin increases and dopexamine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
dopexamine and caffeine both decrease sedation. Use Caution/Monitor. - doxazosin
aspirin decreases effects of doxazosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- doxepin
doxepin increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- droperidol
droperidol increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- drospirenone
drospirenone and aspirin both increase serum potassium. Modify Therapy/Monitor Closely.
- droxidopa
caffeine and droxidopa both increase sympathetic (adrenergic) effects, including increased blood pressure and heart rate. Use Caution/Monitor. May increase risk for supine hypertension
- duloxetine
duloxetine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- edoxaban
edoxaban, aspirin. Either increases toxicity of the other by anticoagulation. Modify Therapy/Monitor Closely. Both drugs have the potential to cause bleeding. The need for simultaneous use of low-dose aspirin (<100 mg/day) with anticoagulants are common for patients with cardiovascular disease, but may result in increased bleeding; monitor closely. Promptly evaluate any signs or symptoms of blood loss if treated concomitantly with low-dose aspirin. Avoid coadministration with chronic use of higher dose aspirin.
- elvitegravir/cobicistat/emtricitabine/tenofovir DF
elvitegravir/cobicistat/emtricitabine/tenofovir DF, aspirin. Either increases toxicity of the other by decreasing renal clearance. Modify Therapy/Monitor Closely. Toxicity may result from coadministration of emtricitabine and tenofovir with other drugs that are also primarily excreted by glomerular filtration and/or active tubular secretion including high-dose or multiple-dose NSAIDs; alternatives to NSAIDs should be considered.
- enalapril
enalapril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.
- enoxaparin
enoxaparin and aspirin both increase anticoagulation. Use Caution/Monitor. Additive effects are intended when both drugs are prescribed as indicated for unstable angina, non-Q-wave MI, and STEMI
aspirin, enoxaparin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - ephedrine
aspirin increases and ephedrine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
ephedrine and caffeine both decrease sedation. Use Caution/Monitor. - epinephrine
epinephrine and caffeine both decrease sedation. Use Caution/Monitor.
aspirin increases and epinephrine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor. - epinephrine inhaled
caffeine, epinephrine inhaled. Either increases effects of the other by sympathetic (adrenergic) effects, including increased blood pressure and heart rate. Use Caution/Monitor.
- epinephrine racemic
aspirin increases and epinephrine racemic decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- epinephrine racemic
epinephrine racemic and caffeine both decrease sedation. Use Caution/Monitor.
- epoprostenol
aspirin and epoprostenol both increase anticoagulation. Use Caution/Monitor.
- eprosartan
eprosartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of eprosartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
eprosartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - eptifibatide
aspirin, eptifibatide. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- escitalopram
escitalopram, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- esketamine intranasal
esketamine intranasal, caffeine. Either increases toxicity of the other by sympathetic (adrenergic) effects, including increased blood pressure and heart rate. Use Caution/Monitor. Closely monitor blood pressure with concomitant use of esketamine nasal with stimulants. .
- esmolol
esmolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of esmolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - estazolam
estazolam increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- ethacrynic acid
aspirin increases and ethacrynic acid decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- ethanol
ethanol increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- ethinylestradiol
ethinylestradiol will increase the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor.
- etodolac
aspirin and etodolac both increase anticoagulation. Use Caution/Monitor.
aspirin and etodolac both increase serum potassium. Use Caution/Monitor. - fenbufen
aspirin and fenbufen both increase anticoagulation. Use Caution/Monitor.
aspirin and fenbufen both increase serum potassium. Use Caution/Monitor. - fenfluramine
caffeine and fenfluramine both decrease sedation. Use Caution/Monitor.
- fennel
aspirin and fennel both increase anticoagulation. Use Caution/Monitor.
- fenoprofen
aspirin and fenoprofen both increase anticoagulation. Use Caution/Monitor.
aspirin and fenoprofen both increase serum potassium. Use Caution/Monitor. - feverfew
aspirin and feverfew both increase anticoagulation. Use Caution/Monitor.
- fexinidazole
fexinidazole will increase the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor.
- fish oil
fish oil, aspirin. Other (see comment). Use Caution/Monitor. Comment: Patients taking fish oil and an anticoagulant or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding. .
- fish oil triglycerides
fish oil triglycerides will increase the level or effect of aspirin by anticoagulation. Use Caution/Monitor. Prolonged bleeding reported in patients taking antiplatelet agents or anticoagulants and oral omega-3 fatty acids. Periodically monitor bleeding time in patients receiving fish oil triglycerides and concomitant antiplatelet agents or anticoagulants.
- fludrocortisone
aspirin, fludrocortisone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- fluoxetine
fluoxetine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- fluphenazine
fluphenazine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- flurazepam
flurazepam increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- flurbiprofen
aspirin and flurbiprofen both increase anticoagulation. Use Caution/Monitor.
aspirin and flurbiprofen both increase serum potassium. Use Caution/Monitor. - fluvoxamine
fluvoxamine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding SSRIs inhib. serotonin uptake by platelets.
fluvoxamine will increase the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor. - fondaparinux
fondaparinux and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
- formoterol
formoterol and caffeine both decrease sedation. Use Caution/Monitor.
- formoterol
aspirin increases and formoterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- forskolin
aspirin and forskolin both increase anticoagulation. Use Caution/Monitor.
- fosinopril
fosinopril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.
- furosemide
aspirin increases and furosemide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- garlic
aspirin and garlic both increase anticoagulation. Use Caution/Monitor.
- gentamicin
aspirin increases and gentamicin decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- ginger
aspirin and ginger both increase anticoagulation. Use Caution/Monitor.
- ginkgo biloba
aspirin and ginkgo biloba both increase anticoagulation. Use Caution/Monitor.
- glimepiride
aspirin increases effects of glimepiride by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.
- glipizide
aspirin increases effects of glipizide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.
- glyburide
aspirin increases effects of glyburide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.
- green tea
green tea increases effects of caffeine by Other (see comment). Use Caution/Monitor. Comment: Potential for increased risk of CNS stimulation due to caffeine component of green tea. Caution advised.
green tea increases effects of aspirin by pharmacodynamic synergism. Use Caution/Monitor. (Theoretical, due to caffeine content). Combination may increase risk of bleeding. - griseofulvin
griseofulvin decreases levels of aspirin by unknown mechanism. Use Caution/Monitor.
- guselkumab
guselkumab, caffeine. Other (see comment). Use Caution/Monitor. Comment: Formation of CYP450 enzymes can be altered by increased levels of certain cytokines during chronic inflammation; thus, normalizing the formation of CYP450 enzymes. Upon initiation or discontinuation of guselkumab in patients who are receiving concomitant CYP450 substrates, particularly those with a narrow therapeutic index, consider monitoring for therapeutic effect.
- haloperidol
haloperidol increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- heparin
heparin and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin, heparin. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely. - horse chestnut seed
aspirin and horse chestnut seed both increase anticoagulation. Use Caution/Monitor.
- hyaluronidase
aspirin decreases effects of hyaluronidase by Other (see comment). Use Caution/Monitor. Comment: Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients may require larger amounts of hyaluronidase for equivalent dispersing effect.
- hydralazine
aspirin decreases effects of hydralazine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- hydrochlorothiazide
aspirin increases and hydrochlorothiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- hydrocortisone
aspirin, hydrocortisone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- hydromorphone
hydromorphone increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- hydroxyzine
hydroxyzine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- ibrutinib
ibrutinib will increase the level or effect of aspirin by anticoagulation. Use Caution/Monitor. Ibrutinib may increase the risk of hemorrhage in patients receiving antiplatelet or anticoagulant therapies and monitor for signs of bleeding.
- ibuprofen
aspirin and ibuprofen both increase anticoagulation. Use Caution/Monitor.
aspirin and ibuprofen both increase serum potassium. Use Caution/Monitor. - ibuprofen IV
aspirin will increase the level or effect of ibuprofen IV by acidic (anionic) drug competition for renal tubular clearance. Modify Therapy/Monitor Closely.
aspirin and ibuprofen IV both increase anticoagulation. Modify Therapy/Monitor Closely.
aspirin and ibuprofen IV both increase serum potassium. Use Caution/Monitor. - icosapent
icosapent, aspirin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Icosapent may prolong bleeding time. Periodically monitor if coadministered with other drugs that affect bleeding.
- iloperidone
iloperidone increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- imatinib
imatinib, aspirin. Either increases toxicity of the other by Other (see comment). Modify Therapy/Monitor Closely. Comment: Imatinib may cause thrombocytopenia; bleeding risk increased when imatinib is coadministered with anticoagulants, NSAIDs, platelet inhibitors, and thrombolytic agents.
- imipramine
imipramine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- indapamide
aspirin increases and indapamide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- indomethacin
aspirin and indomethacin both increase anticoagulation. Use Caution/Monitor.
aspirin and indomethacin both increase serum potassium. Use Caution/Monitor. - insulin aspart
aspirin increases effects of insulin aspart by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin aspart protamine/insulin aspart
aspirin increases effects of insulin aspart protamine/insulin aspart by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin degludec
aspirin increases effects of insulin degludec by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin degludec/insulin aspart
aspirin, insulin degludec/insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Both drugs decrease blood glucose.
- insulin detemir
aspirin increases effects of insulin detemir by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin glargine
aspirin increases effects of insulin glargine by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin glulisine
aspirin increases effects of insulin glulisine by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin inhaled
aspirin increases effects of insulin inhaled by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin isophane human/insulin regular human
aspirin increases effects of insulin isophane human/insulin regular human by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin lispro
aspirin increases effects of insulin lispro by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin lispro protamine/insulin lispro
aspirin increases effects of insulin lispro protamine/insulin lispro by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin NPH
aspirin increases effects of insulin NPH by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- insulin regular human
aspirin increases effects of insulin regular human by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.
- irbesartan
irbesartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of irbesartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
irbesartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - isoproterenol
isoproterenol and caffeine both decrease sedation. Use Caution/Monitor.
aspirin increases and isoproterenol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor. - ketoprofen
aspirin and ketoprofen both increase anticoagulation. Use Caution/Monitor.
aspirin and ketoprofen both increase serum potassium. Use Caution/Monitor. - ketotifen, ophthalmic
ketotifen, ophthalmic increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- ketorolac
aspirin and ketorolac both increase anticoagulation. Use Caution/Monitor.
aspirin and ketorolac both increase serum potassium. Use Caution/Monitor. - ketorolac intranasal
aspirin and ketorolac intranasal both increase anticoagulation. Use Caution/Monitor.
aspirin and ketorolac intranasal both increase serum potassium. Use Caution/Monitor. - labetalol
labetalol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of labetalol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - latanoprost
latanoprost, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).
- latanoprostene bunod ophthalmic
latanoprostene bunod ophthalmic, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).
- letermovir
letermovir increases levels of caffeine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.
- levalbuterol
aspirin increases and levalbuterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
levalbuterol and caffeine both decrease sedation. Use Caution/Monitor. - levomilnacipran
levomilnacipran, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. SNRIs may further impair platelet activity in patients taking antiplatelet or anticoagulant drugs.
- levorphanol
levorphanol increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- levothyroxine
caffeine decreases levels of levothyroxine by inhibition of GI absorption. Applies only to oral form of both agents. Use Caution/Monitor. Caffeine (a sympathomimetic) concomitantly used with oral levothyroxine may increase the effects of sympathomimetics or thyroid hormone. Thyroid hormones may increase the risk of coronary insufficiency when sympathomimetic agents are administered to patients with coronary artery disease.
- lisdexamfetamine
caffeine and lisdexamfetamine both decrease sedation. Use Caution/Monitor.
- lisinopril
lisinopril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.
- lithium
aspirin increases levels of lithium by decreasing renal clearance. Use Caution/Monitor.
- lofepramine
lofepramine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- lofexidine
lofexidine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- loprazolam
loprazolam increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- lorazepam
lorazepam increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- lormetazepam
lormetazepam increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- lornoxicam
aspirin and lornoxicam both increase anticoagulation. Use Caution/Monitor.
aspirin and lornoxicam both increase serum potassium. Use Caution/Monitor. - losartan
losartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of losartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
losartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - loxapine
loxapine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- loxapine inhaled
loxapine inhaled increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- maprotiline
maprotiline increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- marijuana
marijuana increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- meclofenamate
aspirin and meclofenamate both increase anticoagulation. Use Caution/Monitor.
aspirin and meclofenamate both increase serum potassium. Use Caution/Monitor. - mefenamic acid
aspirin and mefenamic acid both increase anticoagulation. Use Caution/Monitor.
aspirin and mefenamic acid both increase serum potassium. Use Caution/Monitor. - melatonin
melatonin increases effects of aspirin by anticoagulation. Use Caution/Monitor. Melatonin may decrease prothrombin time.
melatonin increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor. - meloxicam
aspirin and meloxicam both increase anticoagulation. Use Caution/Monitor.
aspirin and meloxicam both increase serum potassium. Use Caution/Monitor. - meperidine
meperidine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- meprobamate
meprobamate increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- mesalamine
mesalamine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Additive nephrotoxicity.
- metaproterenol
aspirin increases and metaproterenol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
metaproterenol and caffeine both decrease sedation. Use Caution/Monitor. - methadone
methadone increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- methazolamide
methazolamide, aspirin. Either increases levels of the other by Other (see comment). Use Caution/Monitor. Comment: Carbonic anhydrase inhibitors (CAIs) and salicylates inhibit each other's renal tubular secretion, resulting in increased plasma levels. CAIs also shift salicylates from plasma to the CNS, leading to potential neurotoxicity.
- methamphetamine
caffeine and methamphetamine both decrease sedation. Use Caution/Monitor.
- methotrexate
caffeine decreases effects of methotrexate by pharmacodynamic antagonism. Use Caution/Monitor.
- methyclothiazide
aspirin increases and methyclothiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor. .
- methylenedioxymethamphetamine
caffeine and methylenedioxymethamphetamine both decrease sedation. Use Caution/Monitor.
- methylphenidate
caffeine increases effects of methylphenidate by pharmacodynamic synergism. Use Caution/Monitor. Risk of acute hypertensive episode.
- methylprednisolone
aspirin, methylprednisolone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- metolazone
aspirin increases and metolazone decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- metoprolol
metoprolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of metoprolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - midazolam
midazolam increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- midodrine
caffeine and midodrine both decrease sedation. Use Caution/Monitor.
- milnacipran
milnacipran, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- mirtazapine
mirtazapine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- mistletoe
aspirin increases and mistletoe decreases anticoagulation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- modafinil
caffeine and modafinil both decrease sedation. Use Caution/Monitor.
- moexipril
moexipril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.
- morphine
morphine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- motherwort
motherwort increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- moxisylyte
aspirin decreases effects of moxisylyte by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- moxonidine
moxonidine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- mycophenolate
aspirin will increase the level or effect of mycophenolate by acidic (anionic) drug competition for renal tubular clearance. Use Caution/Monitor.
- nabilone
nabilone increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- nabumetone
aspirin and nabumetone both increase anticoagulation. Use Caution/Monitor.
aspirin and nabumetone both increase serum potassium. Use Caution/Monitor. - nadolol
nadolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of nadolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - nafcillin
nafcillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
nafcillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - nalbuphine
nalbuphine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- naproxen
aspirin and naproxen both increase anticoagulation. Use Caution/Monitor.
aspirin and naproxen both increase serum potassium. Use Caution/Monitor. - nebivolol
nebivolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of nebivolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - nefazodone
nefazodone, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- nettle
aspirin increases and nettle decreases anticoagulation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- nitazoxanide
nitazoxanide, aspirin. Either increases levels of the other by Mechanism: plasma protein binding competition. Use Caution/Monitor.
- nitroglycerin rectal
aspirin will increase the level or effect of nitroglycerin rectal by Other (see comment). Use Caution/Monitor. The pharmacological effects of nitroglycerin may be enhanced by concomitant administration of aspirin.
- nitroglycerin sublingual
aspirin increases effects of nitroglycerin sublingual by additive vasodilation. Use Caution/Monitor. Vasodilatory and hemodynamic effects of NTG may be enhanced by coadministration with aspirin (additive effect desirable for emergent treatment).
- norepinephrine
norepinephrine and caffeine both decrease sedation. Use Caution/Monitor.
aspirin increases and norepinephrine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor. - nortriptyline
nortriptyline increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- olmesartan
olmesartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of olmesartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
olmesartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - olanzapine
olanzapine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- omega 3 carboxylic acids
omega 3 carboxylic acids, aspirin. Other (see comment). Use Caution/Monitor. Comment: Patients taking omega-3 acids and an anticoagulant or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding.
- omega 3 fatty acids
omega 3 fatty acids, aspirin. Other (see comment). Use Caution/Monitor. Comment: Patients taking omega-3-fatty acids and an anticoagulant or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding. .
- opium tincture
opium tincture increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- ospemifene
aspirin, ospemifene. Either increases levels of the other by plasma protein binding competition. Modify Therapy/Monitor Closely.
- oxacillin
oxacillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
oxacillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - oxaprozin
aspirin and oxaprozin both increase anticoagulation. Use Caution/Monitor.
aspirin and oxaprozin both increase serum potassium. Use Caution/Monitor. - oxazepam
oxazepam increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- oxycodone
oxycodone increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- oxymorphone
oxymorphone increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- paliperidone
paliperidone increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- panax ginseng
aspirin and panax ginseng both increase anticoagulation. Use Caution/Monitor.
- papaveretum
papaveretum increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- parecoxib
aspirin and parecoxib both increase anticoagulation. Use Caution/Monitor.
aspirin and parecoxib both increase serum potassium. Use Caution/Monitor. - paroxetine
paroxetine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- pau d'arco
aspirin and pau d'arco both increase anticoagulation. Use Caution/Monitor.
- pefloxacin
pefloxacin will increase the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor.
- pegaspargase
pegaspargase increases effects of aspirin by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of bleeding events.
- penbutolol
penbutolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of penbutolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - penicillin G aqueous
penicillin G aqueous, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
penicillin G aqueous, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - pentazocine
pentazocine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- pentobarbital
pentobarbital increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- perindopril
perindopril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high doses of aspirin,in elderly or volume depleted individuals.
- perphenazine
perphenazine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- phendimetrazine
caffeine and phendimetrazine both decrease sedation. Use Caution/Monitor.
- phenindione
phenindione and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
- phenobarbital
phenobarbital increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- phenoxybenzamine
aspirin decreases effects of phenoxybenzamine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- phentermine
caffeine and phentermine both decrease sedation. Use Caution/Monitor.
- phentolamine
aspirin decreases effects of phentolamine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- phenylephrine
caffeine and phenylephrine both decrease sedation. Use Caution/Monitor.
- phenylephrine PO
caffeine and phenylephrine PO both decrease sedation. Use Caution/Monitor.
- pholcodine
pholcodine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- phytoestrogens
aspirin and phytoestrogens both increase anticoagulation. Use Caution/Monitor.
- pimozide
pimozide increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- pindolol
pindolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of pindolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - pirbuterol
aspirin increases and pirbuterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
pirbuterol and caffeine both decrease sedation. Use Caution/Monitor. - piroxicam
aspirin and piroxicam both increase anticoagulation. Use Caution/Monitor.
aspirin and piroxicam both increase serum potassium. Use Caution/Monitor. - primidone
primidone increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- pivmecillinam
pivmecillinam, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
pivmecillinam, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - potassium acid phosphate
aspirin and potassium acid phosphate both increase serum potassium. Modify Therapy/Monitor Closely.
- potassium chloride
aspirin and potassium chloride both increase serum potassium. Modify Therapy/Monitor Closely.
- potassium citrate
aspirin and potassium citrate both increase serum potassium. Use Caution/Monitor.
- potassium iodide
potassium iodide and aspirin both increase serum potassium. Use Caution/Monitor.
- prasugrel
aspirin, prasugrel. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- prazosin
aspirin decreases effects of prazosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- prednisolone
aspirin, prednisolone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- prednisone
aspirin, prednisone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.
- prochlorperazine
prochlorperazine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- promethazine
promethazine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- propranolol
propranolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of propranolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - propylhexedrine
caffeine and propylhexedrine both decrease sedation. Use Caution/Monitor.
- protamine
protamine and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.
- protriptyline
protriptyline increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- quazepam
quazepam increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- quetiapine
quetiapine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- quinapril
quinapril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high doses of aspirin, in elderly or volume depleted individuals.
- ramipril
ramipril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high doses of aspirin, in elderly or volume depleted individuals.
- rasagiline
rasagiline increases effects of caffeine by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Risk of acute hypertensive episode.
- reishi
aspirin and reishi both increase anticoagulation. Use Caution/Monitor.
- reteplase
aspirin, reteplase. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- risperidone
risperidone increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- rivaroxaban
aspirin, rivaroxaban. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. Both drugs have the potential to cause bleeding. The need for simultaneous use of low-dose aspirin (<100 mg/day) with anticoagulants are common for patients with cardiovascular disease, but may result in increased bleeding; monitor closely. Promptly evaluate any signs or symptoms of blood loss if treated concomitantly with low-dose aspirin. Avoid coadministration with chronic use of higher dose aspirin.
- rivastigmine
rivastigmine increases toxicity of aspirin by pharmacodynamic synergism. Use Caution/Monitor. Monitor patients for symptoms of active or occult gastrointestinal bleeding.
- rucaparib
rucaparib will increase the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Modify Therapy/Monitor Closely. Adjust dosage of CYP1A2 substrates, if clinically indicated.
- sacubitril/valsartan
sacubitril/valsartan and aspirin both increase serum potassium. Use Caution/Monitor.
sacubitril/valsartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals.
aspirin decreases effects of sacubitril/valsartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect. - salicylates (non-asa)
aspirin and salicylates (non-asa) both increase anticoagulation. Use Caution/Monitor.
aspirin and salicylates (non-asa) both increase serum potassium. Use Caution/Monitor. - salmeterol
aspirin increases and salmeterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
salmeterol and caffeine both decrease sedation. Use Caution/Monitor. - salsalate
aspirin and salsalate both increase anticoagulation. Use Caution/Monitor.
aspirin and salsalate both increase serum potassium. Use Caution/Monitor. - scullcap
scullcap increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- saw palmetto
saw palmetto increases toxicity of aspirin by unspecified interaction mechanism. Use Caution/Monitor. May increase risk of bleeding.
- secobarbital
secobarbital increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- selegiline
selegiline increases effects of caffeine by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Risk of acute hypertensive episode.
- selumetinib
aspirin and selumetinib both increase anticoagulation. Modify Therapy/Monitor Closely. An increased risk of bleeding may occur in patients taking a vitamin-K antagonist or an antiplatelet agent with selumetinib. Monitor for bleeding and INR or PT in patients coadministered a vitamin-K antagonist or an antiplatelet agent with selumetinib.
- sertraline
sertraline, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- Siberian ginseng
aspirin and Siberian ginseng both increase anticoagulation. Use Caution/Monitor.
- shepherd's purse
shepherd's purse increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- silodosin
aspirin decreases effects of silodosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- sodium picosulfate/magnesium oxide/anhydrous citric acid
aspirin, sodium picosulfate/magnesium oxide/anhydrous citric acid. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May be associated with fluid and electrolyte imbalances.
- sodium sulfate/?magnesium sulfate/potassium chloride
sodium sulfate/?magnesium sulfate/potassium chloride increases toxicity of aspirin by Other (see comment). Use Caution/Monitor. Comment: Coadministration with medications that cause fluid and electrolyte abnormalities may increase the risk of adverse events of seizure, arrhythmias, and renal impairment.
- sodium sulfate/potassium sulfate/magnesium sulfate
sodium sulfate/potassium sulfate/magnesium sulfate increases toxicity of aspirin by Other (see comment). Use Caution/Monitor. Comment: Coadministration with medications that cause fluid and electrolyte abnormalities may increase the risk of adverse events of seizure, arrhythmias, and renal impairment.
- solriamfetol
caffeine and solriamfetol both increase sympathetic (adrenergic) effects, including increased blood pressure and heart rate. Use Caution/Monitor.
- sotalol
sotalol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of sotalol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - sparsentan
aspirin and sparsentan both increase nephrotoxicity and/or ototoxicity. Use Caution/Monitor. Coadministration of NSAIDS, including selective COX-2 inhibitors, may result in deterioration of kidney function (eg, possible kidney failure). Monitor for signs of worsening renal function with concomitant use with NSAIDs.
- spironolactone
spironolactone and aspirin both increase serum potassium. Modify Therapy/Monitor Closely.
aspirin decreases effects of spironolactone by unspecified interaction mechanism. Use Caution/Monitor. When used concomitantly, spironolactone dose may need to be titrated to higher maintenance dose and the patient should be observed closely to determine if the desired effect is obtained. - stiripentol
stiripentol, caffeine. affecting hepatic enzyme CYP1A2 metabolism. Modify Therapy/Monitor Closely. Stiripentol is a CYP1A2 inhibitor and inducer. Monitor CYP1A2 substrates coadministered with stiripentol for increased or decreased effects. CYP1A2 substrates may require dosage adjustment.
- succinylcholine
aspirin and succinylcholine both increase serum potassium. Use Caution/Monitor.
- sufentanil
sufentanil increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- sulfamethoxazole
aspirin, sulfamethoxazole. Either increases effects of the other by plasma protein binding competition. Use Caution/Monitor. Due to high protein binding capacity of both drugs, one may displace the other when coadministered leading to an enhanced effect of the displaced drug; risk is low with low dose aspirin.
- sulfasalazine
aspirin and sulfasalazine both increase anticoagulation. Use Caution/Monitor.
aspirin and sulfasalazine both increase serum potassium. Use Caution/Monitor. - sulindac
aspirin and sulindac both increase anticoagulation. Use Caution/Monitor.
aspirin and sulindac both increase serum potassium. Use Caution/Monitor. - tafluprost
tafluprost, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).
- tapentadol
tapentadol increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- telmisartan
telmisartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of telmisartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
telmisartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - temazepam
temazepam increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- temocillin
temocillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
temocillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - tenecteplase
aspirin, tenecteplase. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- terazosin
aspirin decreases effects of terazosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
- terbutaline
terbutaline and caffeine both decrease sedation. Use Caution/Monitor.
aspirin increases and terbutaline decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor. - teriflunomide
teriflunomide decreases levels of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Use Caution/Monitor.
- ticagrelor
aspirin, ticagrelor. Other (see comment). Use Caution/Monitor. Comment: Maintenance doses of aspirin above 100 mg decreases effectiveness of ticagrelor. Therefore, after the initial loading dose of aspirin (usually 325 mg), use ticagrelor with a maintenance dose of aspirin of 75-100 mg.
- thioridazine
thioridazine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- thiothixene
thiothixene increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- ticarcillin
ticarcillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.
ticarcillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor. - timolol
timolol and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of timolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis. - tirofiban
aspirin, tirofiban. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.
- tobramycin inhaled
tobramycin inhaled and aspirin both increase nephrotoxicity and/or ototoxicity. Modify Therapy/Monitor Closely. Avoid concurrent or sequential use to decrease risk for ototoxicity
- tolazamide
aspirin increases effects of tolazamide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.
- tolbutamide
aspirin increases effects of tolbutamide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.
- tolfenamic acid
aspirin and tolfenamic acid both increase anticoagulation. Use Caution/Monitor.
aspirin and tolfenamic acid both increase serum potassium. Use Caution/Monitor. - tolmetin
aspirin and tolmetin both increase anticoagulation. Use Caution/Monitor.
aspirin and tolmetin both increase serum potassium. Use Caution/Monitor. - tolvaptan
aspirin and tolvaptan both increase serum potassium. Use Caution/Monitor.
- topiramate
topiramate increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Modify Therapy/Monitor Closely.
- torsemide
aspirin increases and torsemide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- tramadol
tramadol increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- trandolapril
trandolapril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly and volume depleted.
- travoprost ophthalmic
travoprost ophthalmic, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).
- trazodone
trazodone, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
trazodone increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor. - triamcinolone acetonide injectable suspension
aspirin, triamcinolone acetonide injectable suspension. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Aspirin in conjunction with corticosteroids in hypoprothrombinemia should used with caution. Clearance of salicylates may increase with concurrent use of corticosteroids.
- triazolam
triazolam increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- triamterene
triamterene and aspirin both increase serum potassium. Modify Therapy/Monitor Closely.
- triclofos
triclofos increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- trifluoperazine
trifluoperazine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- trimipramine
trimipramine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- triprolidine
triprolidine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- valproic acid
aspirin increases levels of valproic acid by plasma protein binding competition. Use Caution/Monitor.
- valsartan
valsartan and aspirin both increase serum potassium. Use Caution/Monitor.
aspirin decreases effects of valsartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.
valsartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals. - venlafaxine
venlafaxine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.
- voclosporin
voclosporin, aspirin. Either increases toxicity of the other by nephrotoxicity and/or ototoxicity. Modify Therapy/Monitor Closely. Coadministration with drugs associated with nephrotoxicity may increase the risk for acute and/or chronic nephrotoxicity.
- vorapaxar
aspirin, vorapaxar. Either increases effects of the other by anticoagulation. Use Caution/Monitor. Coadministration of anticoagulants, antiplatelets, or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding.
aspirin, vorapaxar. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Additive antiplatelet effect may occur. - vortioxetine
aspirin, vortioxetine. Either increases effects of the other by anticoagulation. Use Caution/Monitor. Risk minimal with low-dose aspirin.
- warfarin
aspirin increases effects of warfarin by anticoagulation. Modify Therapy/Monitor Closely. Avoid coadministration of chronic high-dose aspirin. Aspirin's antiplatelet properties may increase anticoagulation effect of warfarin. The need for simultaneous use of low-dose aspirin and warfarin is common for patients with cardiovascular disease. .
- xylometazoline
caffeine and xylometazoline both decrease sedation. Use Caution/Monitor.
- yohimbine
caffeine and yohimbine both decrease sedation. Use Caution/Monitor.
- zanubrutinib
aspirin, zanubrutinib. Either increases effects of the other by anticoagulation. Modify Therapy/Monitor Closely. Zanubrutinib-induced cytopenias increases risk of hemorrhage. Coadministration of zanubritinib with antiplatelets or anticoagulants may further increase this risk.
- ziconotide
ziconotide increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- ziprasidone
ziprasidone increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.
- zotepine
aspirin decreases effects of zotepine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.
Minor (158)
- aceclofenac
aceclofenac will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- acemetacin
acemetacin will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- acetazolamide
aspirin will decrease the level or effect of acetazolamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- acyclovir
aspirin will increase the level or effect of acyclovir by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- adenosine
caffeine decreases effects of adenosine by pharmacodynamic antagonism. Minor/Significance Unknown.
- alendronate
aspirin, alendronate. Either increases toxicity of the other by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of GI ulceration.
- aluminum hydroxide
aluminum hydroxide, aspirin. Mechanism: passive renal tubular reabsorption due to increased pH. Minor/Significance Unknown. Salicylate levels increased at moderate doses; salicylate levels decreased at large doses (d/t increased renal excretion of unchanged salicylic acid).
- amantadine
amantadine, caffeine. Either increases effects of the other by pharmacodynamic synergism. Minor/Significance Unknown. Potential for additive CNS stimulation.
- American ginseng
American ginseng increases effects of caffeine by pharmacodynamic synergism. Minor/Significance Unknown.
- amikacin
aspirin increases levels of amikacin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.
- aminohippurate sodium
aspirin will increase the level or effect of aminohippurate sodium by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- amobarbital
amobarbital will decrease the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- anamu
aspirin and anamu both increase anticoagulation. Minor/Significance Unknown.
- anastrozole
aspirin will decrease the level or effect of anastrozole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- armodafinil
armodafinil will decrease the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- ascorbic acid
ascorbic acid will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
aspirin decreases levels of ascorbic acid by increasing renal clearance. Minor/Significance Unknown.
ascorbic acid increases levels of aspirin by decreasing renal clearance. Minor/Significance Unknown. - balsalazide
aspirin will increase the level or effect of balsalazide by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- bendroflumethiazide
bendroflumethiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- bismuth subsalicylate
bismuth subsalicylate increases effects of aspirin by pharmacodynamic synergism. Minor/Significance Unknown.
- bumetanide
aspirin, bumetanide. Other (see comment). Minor/Significance Unknown. Comment: Salicylates are less likely than other NSAIDs to interact w/bumetanide.
- butabarbital
butabarbital will decrease the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- butalbital
butalbital will decrease the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- calcium acetate
caffeine decreases levels of calcium acetate by increasing renal clearance. Minor/Significance Unknown.
- calcium carbonate
calcium carbonate, aspirin. Mechanism: passive renal tubular reabsorption due to increased pH. Minor/Significance Unknown. Salicylate levels increased at moderate doses; salicylate levels decreased at large doses (d/t increased renal excretion of unchanged salicylic acid).
caffeine decreases levels of calcium carbonate by increasing renal clearance. Minor/Significance Unknown. - calcium chloride
caffeine decreases levels of calcium chloride by increasing renal clearance. Minor/Significance Unknown.
- cefadroxil
cefadroxil will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- calcium citrate
caffeine decreases levels of calcium citrate by increasing renal clearance. Minor/Significance Unknown.
- calcium gluconate
caffeine decreases levels of calcium gluconate by increasing renal clearance. Minor/Significance Unknown.
- carbamazepine
carbamazepine will decrease the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- cefamandole
cefamandole will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- cefepime
cefepime will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- cefixime
cefixime will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- cefpirome
cefpirome will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- cefprozil
cefprozil will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- ceftazidime
ceftazidime will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- ceftibuten
ceftibuten will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- celecoxib
aspirin will increase the level or effect of celecoxib by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- cephalexin
cephalexin will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- ceritinib
aspirin will decrease the level or effect of ceritinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- chlorothiazide
chlorothiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- chlorpropamide
aspirin will increase the level or effect of chlorpropamide by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
aspirin increases effects of chlorpropamide by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate. - chlorthalidone
chlorthalidone will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- choline magnesium trisalicylate
aspirin will increase the level or effect of choline magnesium trisalicylate by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- chromium
aspirin increases levels of chromium by unspecified interaction mechanism. Minor/Significance Unknown.
- cigarette smoking
cigarette smoking will decrease the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- cimetidine
cimetidine will increase the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- clotrimazole
clotrimazole increases levels of caffeine by decreasing metabolism. Minor/Significance Unknown.
- cortisone
cortisone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- creatine
creatine, aspirin. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. (Theoretical interaction) Combination may have additive nephrotoxic effects.
- cyanocobalamin
aspirin decreases levels of cyanocobalamin by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.
- cyclopenthiazide
cyclopenthiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- cyclophosphamide
aspirin will decrease the level or effect of cyclophosphamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- danshen
aspirin and danshen both increase anticoagulation. Minor/Significance Unknown.
- deflazacort
deflazacort decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- devil's claw
aspirin and devil's claw both increase anticoagulation. Minor/Significance Unknown.
- dexamethasone
dexamethasone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- diclofenac
aspirin will increase the level or effect of diclofenac by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- diclofenac topical
diclofenac topical, aspirin. Either increases effects of the other by pharmacodynamic synergism. Minor/Significance Unknown. Although low, there is systemic exposure to diclofenac topical; theoretically, concomitant administration with systemic NSAIDS or aspirin may result in increased NSAID adverse effects.
- diflunisal
aspirin will increase the level or effect of diflunisal by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- diltiazem
diltiazem increases effects of aspirin by unknown mechanism. Minor/Significance Unknown. Enhanced antiplatelet activity.
- eplerenone
aspirin decreases effects of eplerenone by pharmacodynamic antagonism. Minor/Significance Unknown. NSAIDs decrease prostaglandin synthesis.
- ethanol
ethanol increases toxicity of aspirin by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of GI bleeding.
- etodolac
aspirin will increase the level or effect of etodolac by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- eucalyptus
eucalyptus increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Minor/Significance Unknown.
- fenbufen
aspirin will increase the level or effect of fenbufen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- fenoprofen
aspirin will increase the level or effect of fenoprofen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- feverfew
aspirin decreases effects of feverfew by pharmacodynamic antagonism. Minor/Significance Unknown.
- fluconazole
fluconazole increases levels of caffeine by decreasing metabolism. Minor/Significance Unknown.
- fludrocortisone
fludrocortisone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- flurbiprofen
aspirin will increase the level or effect of flurbiprofen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- folic acid
aspirin decreases levels of folic acid by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.
- furosemide
aspirin decreases effects of furosemide by pharmacodynamic antagonism. Minor/Significance Unknown. NSAIDs decrease prostaglandin synthesis.
- ganciclovir
aspirin will increase the level or effect of ganciclovir by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- gentamicin
aspirin increases levels of gentamicin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.
- glimepiride
aspirin increases effects of glimepiride by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.
- glipizide
aspirin increases effects of glipizide by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.
- glyburide
aspirin increases effects of glyburide by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.
- grapefruit
grapefruit increases levels of caffeine by decreasing metabolism. Minor/Significance Unknown.
- guarana
guarana increases effects of caffeine by pharmacodynamic synergism. Minor/Significance Unknown.
- hydrochlorothiazide
hydrochlorothiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- hydrocortisone
hydrocortisone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- ibuprofen
aspirin will increase the level or effect of ibuprofen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- imidapril
aspirin decreases effects of imidapril by pharmacodynamic antagonism. Minor/Significance Unknown. NSAIDs decrease prostaglandin synthesis.
- indapamide
indapamide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- indomethacin
aspirin will increase the level or effect of indomethacin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- itraconazole
itraconazole increases levels of caffeine by decreasing metabolism. Minor/Significance Unknown.
- ketoconazole
ketoconazole increases levels of caffeine by decreasing metabolism. Minor/Significance Unknown.
- ketoprofen
aspirin will increase the level or effect of ketoprofen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- ketorolac
aspirin will increase the level or effect of ketorolac by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- ketorolac intranasal
aspirin will increase the level or effect of ketorolac intranasal by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- L-methylfolate
aspirin decreases levels of L-methylfolate by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.
- larotrectinib
aspirin will decrease the level or effect of larotrectinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- levoketoconazole
levoketoconazole increases levels of caffeine by decreasing metabolism. Minor/Significance Unknown.
aspirin will decrease the level or effect of levoketoconazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown. - lornoxicam
aspirin will increase the level or effect of lornoxicam by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- mexiletine
mexiletine will increase the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- meclofenamate
aspirin will increase the level or effect of meclofenamate by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- mefenamic acid
aspirin will increase the level or effect of mefenamic acid by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- meloxicam
aspirin will increase the level or effect of meloxicam by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- mesalamine
aspirin will increase the level or effect of mesalamine by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- methyclothiazide
methyclothiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- methylprednisolone
methylprednisolone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- metolazone
metolazone will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- miconazole vaginal
miconazole vaginal increases levels of caffeine by decreasing metabolism. Minor/Significance Unknown.
- nabumetone
aspirin will increase the level or effect of nabumetone by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- naproxen
aspirin will increase the level or effect of naproxen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- neomycin PO
aspirin increases levels of neomycin PO by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.
- noni juice
aspirin and noni juice both increase serum potassium. Minor/Significance Unknown.
- ofloxacin
ofloxacin, aspirin. Other (see comment). Minor/Significance Unknown. Comment: Risk of CNS stimulation/seizure. Mechanism: Displacement of GABA from receptors in brain.
- oxaprozin
aspirin will increase the level or effect of oxaprozin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- parecoxib
aspirin will increase the level or effect of parecoxib by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- paromomycin
aspirin increases levels of paromomycin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.
- peginterferon alfa 2a
peginterferon alfa 2a will increase the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- penicillin VK
penicillin VK, aspirin. Either increases levels of the other by decreasing renal clearance. Minor/Significance Unknown.
- pentazocine
aspirin, pentazocine. Either increases toxicity of the other by pharmacodynamic synergism. Minor/Significance Unknown. Possible risk of renal papillary necrosis w/chronic Tx.
- pentobarbital
pentobarbital will decrease the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- phenobarbital
phenobarbital will decrease the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- pipemidic acid
pipemidic acid will increase the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- piperacillin
piperacillin, aspirin. Either increases effects of the other by receptor binding competition. Minor/Significance Unknown. Salicylic acid could be displaced from protein binding sites or it could itself displace other protein-bound drugs and result in an enhanced effect of the displaced drug.
- piroxicam
aspirin will increase the level or effect of piroxicam by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- posaconazole
posaconazole increases levels of caffeine by decreasing metabolism. Minor/Significance Unknown.
- prednisolone
prednisolone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- prednisone
prednisone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- primidone
primidone will decrease the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- rifampin
rifampin will decrease the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- rose hips
rose hips will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
aspirin decreases levels of rose hips by increasing renal clearance. Minor/Significance Unknown.
rose hips increases levels of aspirin by decreasing renal clearance. Minor/Significance Unknown. - sage
sage increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Minor/Significance Unknown.
- salicylates (non-asa)
aspirin will increase the level or effect of salicylates (non-asa) by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- salsalate
aspirin will increase the level or effect of salsalate by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- secobarbital
secobarbital will decrease the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- smoking
smoking will decrease the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- sodium bicarbonate
sodium bicarbonate, aspirin. Mechanism: passive renal tubular reabsorption due to increased pH. Minor/Significance Unknown. Salicylate levels increased at moderate doses; salicylate levels decreased at large doses (d/t increased renal excretion of unchanged salicylic acid).
- sodium citrate/citric acid
sodium citrate/citric acid, aspirin. Mechanism: passive renal tubular reabsorption due to increased pH. Minor/Significance Unknown. Salicylate levels increased at moderate doses; salicylate levels decreased at large doses (d/t increased renal excretion of unchanged salicylic acid).
- stiripentol
aspirin will decrease the level or effect of stiripentol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- streptomycin
aspirin increases levels of streptomycin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.
- sulfadiazine
aspirin increases levels of sulfadiazine by unspecified interaction mechanism. Minor/Significance Unknown.
- sulfasalazine
aspirin will increase the level or effect of sulfasalazine by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- sulfisoxazole
aspirin increases levels of sulfisoxazole by unspecified interaction mechanism. Minor/Significance Unknown.
- sulindac
aspirin will increase the level or effect of sulindac by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- teniposide
aspirin increases levels of teniposide by unspecified interaction mechanism. Minor/Significance Unknown.
- thiamine
caffeine decreases levels of thiamine by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown. Coffee, tea are high in anti-thiamine factors.
- tiludronate
aspirin decreases levels of tiludronate by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.
- tobacco use
tobacco use will decrease the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- tobramycin
aspirin increases levels of tobramycin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.
- tolazamide
aspirin increases effects of tolazamide by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.
- tolbutamide
aspirin increases effects of tolbutamide by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.
- tolfenamic acid
aspirin will increase the level or effect of tolfenamic acid by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- tolmetin
aspirin will increase the level or effect of tolmetin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- triamcinolone acetonide injectable suspension
triamcinolone acetonide injectable suspension decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.
- triamterene
triamterene, aspirin. Other (see comment). Minor/Significance Unknown. Comment: Risk of acute renal failure. Mechanism: NSAIDs decrease prostaglandin synthesis, which normally protect against nephrotoxicity.
aspirin increases toxicity of triamterene by pharmacodynamic antagonism. Minor/Significance Unknown. NSAIDs decrease prostaglandin synthesis, increasing the risk of nephrotoxicity. - valganciclovir
aspirin will increase the level or effect of valganciclovir by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- vancomycin
aspirin increases levels of vancomycin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in neonates.
- verapamil
verapamil increases effects of aspirin by unknown mechanism. Minor/Significance Unknown. Enhanced antiplatelet activity.
verapamil will increase the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown. - voriconazole
voriconazole increases levels of caffeine by decreasing metabolism. Minor/Significance Unknown.
- willow bark
aspirin will increase the level or effect of willow bark by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.
willow bark increases effects of aspirin by pharmacodynamic synergism. Minor/Significance Unknown. Willow bark contains salicylic acid, which may have additive effects/toxicity with salicylate drugs. - yerba mate
yerba mate increases effects of caffeine by pharmacodynamic synergism. Minor/Significance Unknown.
- zafirlukast
aspirin increases levels of zafirlukast by unknown mechanism. Minor/Significance Unknown.
- zileuton
zileuton will increase the level or effect of caffeine by affecting hepatic enzyme CYP1A2 metabolism. Minor/Significance Unknown.
- zoledronic acid
aspirin decreases levels of zoledronic acid by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.
Adverse Effects
Frequency Not Defined
Aspirin
- Dyspepsia
- Heartburn
- Nausea
- Vomiting
- Stomach pain
- Tinnitus (high or chronic dose)
- Rash
Caffeine
- Insomnia
- Irritability
- Angina
- Chest pain
- Sinus tachycardia
- Vasodilation
- Urticaria
- Psychosis
- Decreased tone of esophageal sphincter
- Nervousness
- Restlessness
- Tremor
- Tinnitus
- Nausea
- Vomiting
Warnings
Contraindications
Hypersensitivity
Cautions
Avoid in active peptic ulcer disease
Avoid in severe renal impairment (ie, CrCl <10 mL/min)
Avoid in severe hepatic impairment
Not for use by children and teenagers who have or are recovering from chicken pox or flu-like symptoms; when using this product, if changes in behavior with nausea and vomiting occur, consult healthcare professional; these symptoms could be an early sign of Reye's syndrome, a rare but serious illness
Aspirin may cause a severe allergic reaction, including hives, facial swelling, asthma (wheezing), shock
Ask healthcare professional before use if taking prescription for diabetes, gout or arthritis
Recommended dose of this product contains about as much caffeine as a cup of coffee; limit use of caffeine-containing medications, foods or beverages while taking this product because too much caffeine may cause nervousness, irritability, sleeplessness, and, occasionally, rapid heartbeat
Discontinue use and ask healthcare professional if allergic reaction occurs, experience signs of stomach bleeding, feel faint, vomit blood, have bloody or black stools, have stomach pain that does not get better, new symptoms occur, ringing in the ears or loss of hearing occurs, redness or swelling is present, pain gets worse or lasts more than 10 days, fever gets worse or lasts more than 3 days
Stomach bleeding
Product contains an NSAID, which may cause severe stomach bleeding; chance is higher if patient age 60 or older, have had stomach ulcers or bleeding problems, take a blood thinner (anticoagulant) or steroid drug, take other drugs containing prescription or nonprescription NSAIDs (aspirin, ibuprofen, naproxen, or others), has 3 or more alcoholic drinks every day while using this product, take more or for a longer time than directed
Patient should ask healthcare professional before using if stomach bleeding is a concern; have a history of stomach problems, such as heartburn, have high blood pressure, heart disease, liver cirrhosis, or kidney disease you taking a diuretic, have asthma
Pregnancy & Lactation
Pregnancy
Ask health professional before use; especially important not to use aspirin during last 3 months of pregnancy unless definitely directed to do so by doctor because it may cause problems in the unborn child or complications during delivery
Breastfeeding
Ask health professional before use
Pregnancy Categories
A: Generally acceptable. Controlled studies in pregnant women show no evidence of fetal risk.
B: May be acceptable. Either animal studies show no risk but human studies not available or animal studies showed minor risks and human studies done and showed no risk. C: Use with caution if benefits outweigh risks. Animal studies show risk and human studies not available or neither animal nor human studies done. D: Use in LIFE-THREATENING emergencies when no safer drug available. Positive evidence of human fetal risk. X: Do not use in pregnancy. Risks involved outweigh potential benefits. Safer alternatives exist. NA: Information not available.Pharmacology
Mechanism of Action
Aspirin: Acts on hypothalamus to produce antipyresis; anti-inflammatory properties attributed to prostaglandin synthetase inhibition resulting in decreased formation of thromboxane A2
Caffeine: Vasoconstrictive properties may be helpful when treating vascular headaches