Dosing & Uses
Dosage Forms & Strengths
tablet
- 60mg
- 240mg
Prostate Cancer
Indicated for metastatic castration-sensitive prostate cancer (mCSPC) or nonmetastatic, castration-resistant prostate cancer (nmCRPC)
240 mg PO qDay
Dosage Modifications
Grade ≥3 toxicity or intolerable adverse effect
- Hold dosing until symptoms improve to Grade ≤1 or baseline, THEN
- Resume at the same dose or a reduced dose (180 mg or 120 mg), if warranted
Grade 3-4 cerebrovascular and ischemic cardiovascular events
- Consider permanent discontinuation
Confirmed SCARS or Grade 4 skin reactions
- Permanently discontinue for confirmed severe cutaneous adverse reactions (SCARs) or other grade 4 skin reactions
Renal impairment
- Mild-to-moderate (eGFR 30-89 mL/min/1.73 m2): No clinical significant difference in pharmacokinetics
- Severe (eGFR ≤30 mL/min/1.73 m2): Pharmacokinetics unknown
Hepatic impairment
- Mild-to-moderate (Child-Pugh A or B): No clinical significant difference in pharmacokinetics
- Severe (Child-Pugh C): Pharmacokinetics unknown
Dosing Considerations
Patients receiving antiandrogens (eg, apalutamide) should also receive a gonadotropin-releasing hormone (GnRH) analog (eg, leuprolide, triptorelin, goserelin, histrelin) concurrently or should have had a bilateral orchiectomy
Safety and efficacy not established
Interactions
Interaction Checker
No Results

Contraindicated
Serious - Use Alternative
Significant - Monitor Closely
Minor

Contraindicated (10)
- cabotegravir
apalutamide will decrease the level or effect of cabotegravir by increasing metabolism. Contraindicated. Cabotegravir is metabolized by UGT1A1 and UGT1A9. Strong UGT1A1 or UGT1A9 inducers decrease cabotegravir systemic exposure, thereby increasing potential for loss of virologic response.
- doravirine
apalutamide will decrease the level or effect of doravirine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Coadministration of doravirine with a strong CYP3A inducer may decrease doravirine plasma concentrations and/or effects. Potential for loss of virologic response and possible resistance to doravirine.
- fostemsavir
apalutamide will decrease the level or effect of fostemsavir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Coadministration of fostemsavir (prodrug) with strong CYP3A4 inducers significantly decreases temsavir (active moiety) plasma concentrations, which may lead to loss of virologic response and resistance.
- isavuconazonium sulfate
apalutamide will decrease the level or effect of isavuconazonium sulfate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated.
- lenacapavir
apalutamide will decrease the level or effect of lenacapavir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Coadministration of lenacapavir with strong CYP3A inducers is contraindicated.
- lonafarnib
apalutamide will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- lorlatinib
apalutamide will decrease the level or effect of lorlatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Coadministration of lorlatinib with strong CYP3A inducers is contraindicated. Discontinue the strong CYP3A inducer for 3 plasma half-lives before initiating lorlatinib.
- mavacamten
apalutamide will decrease the level or effect of mavacamten by affecting hepatic enzyme CYP2C19 metabolism. Contraindicated.
apalutamide will decrease the level or effect of mavacamten by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. - nirmatrelvir
apalutamide will decrease the level or effect of nirmatrelvir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Nirmatrelvir, a CYP3A4 substrate, is contraindicated with strong CYP3A4 inducers. Significantly reduced nirmatrelvir plasma concentrations may be associated with potential for loss of virologic response and possible resistance. Do not initiate nirmatrelvir/ritonavir immediately after discontinuing a strong 3A4 inducer owing to time needed for systemic clearance of the inducer.
- nirmatrelvir/ritonavir
apalutamide will decrease the level or effect of nirmatrelvir/ritonavir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Nirmatrelvir, a CYP3A4 substrate, is contraindicated with strong CYP3A4 inducers. Significantly reduced nirmatrelvir plasma concentrations may be associated with potential for loss of virologic response and possible resistance. Do not initiate nirmatrelvir/ritonavir immediately after discontinuing a strong 3A4 inducer owing to time needed for systemic clearance of the inducer.
Serious - Use Alternative (358)
- abametapir
abametapir will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. For 2 weeks after abametapir application, avoid taking drugs that are CYP3A4 substrates. If not feasible, avoid use of abametapir.
- abemaciclib
apalutamide will decrease the level or effect of abemaciclib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- abiraterone
apalutamide will decrease the level or effect of abiraterone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- acalabrutinib
apalutamide will decrease the level or effect of acalabrutinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- adagrasib
apalutamide will decrease the level or effect of adagrasib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- ado-trastuzumab emtansine
apalutamide will decrease the level or effect of ado-trastuzumab emtansine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- alfentanil
apalutamide will decrease the level or effect of alfentanil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- alfuzosin
apalutamide will decrease the level or effect of alfuzosin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- alpelisib
apalutamide will decrease the level or effect of alpelisib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of alpelisib (CYP3A4 substrate) with strong CYP3A4 inducers.
- alprazolam
apalutamide will decrease the level or effect of alprazolam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ambrisentan
apalutamide will decrease the level or effect of ambrisentan by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of ambrisentan by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - amiodarone
apalutamide will decrease the level or effect of amiodarone by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of amiodarone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - amlodipine
apalutamide will decrease the level or effect of amlodipine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- apixaban
apalutamide will decrease the level or effect of apixaban by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- apremilast
apalutamide will decrease the level or effect of apremilast by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- aprepitant
apalutamide will decrease the level or effect of aprepitant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- aripiprazole
apalutamide will decrease the level or effect of aripiprazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- armodafinil
apalutamide will decrease the level or effect of armodafinil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- artemether/lumefantrine
apalutamide will decrease the level or effect of artemether/lumefantrine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- atazanavir
apalutamide will decrease the level or effect of atazanavir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- atorvastatin
apalutamide will decrease the level or effect of atorvastatin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- avanafil
apalutamide will decrease the level or effect of avanafil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- avapritinib
apalutamide will decrease the level or effect of avapritinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- axitinib
apalutamide will decrease the level or effect of axitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- bedaquiline
apalutamide will decrease the level or effect of bedaquiline by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- benzphetamine
apalutamide will decrease the level or effect of benzphetamine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- bortezomib
apalutamide will decrease the level or effect of bortezomib by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of bortezomib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - bosentan
apalutamide will decrease the level or effect of bosentan by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- bosutinib
apalutamide will decrease the level or effect of bosutinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- brentuximab vedotin
apalutamide will decrease the level or effect of brentuximab vedotin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- brexpiprazole
apalutamide will decrease the level or effect of brexpiprazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- brigatinib
apalutamide will decrease the level or effect of brigatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- bromocriptine
apalutamide will decrease the level or effect of bromocriptine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- budesonide
apalutamide will decrease the level or effect of budesonide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- buprenorphine
apalutamide will decrease the level or effect of buprenorphine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- buprenorphine buccal
apalutamide will decrease the level or effect of buprenorphine buccal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- buprenorphine subdermal implant
apalutamide will decrease the level or effect of buprenorphine subdermal implant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- buprenorphine transdermal
apalutamide will decrease the level or effect of buprenorphine transdermal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- buprenorphine, long-acting injection
apalutamide will decrease the level or effect of buprenorphine, long-acting injection by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- buspirone
apalutamide will decrease the level or effect of buspirone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- busulfan
apalutamide will decrease the level or effect of busulfan by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- cabozantinib
apalutamide will decrease the level or effect of cabozantinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- calcifediol
apalutamide will decrease the level or effect of calcifediol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- calcitriol
apalutamide will decrease the level or effect of calcitriol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- capmatinib
apalutamide will decrease the level or effect of capmatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- carbamazepine
apalutamide will decrease the level or effect of carbamazepine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- cariprazine
apalutamide will decrease the level or effect of cariprazine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- carisoprodol
apalutamide will decrease the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
- ceritinib
apalutamide will decrease the level or effect of ceritinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
ceritinib will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. - chlordiazepoxide
apalutamide will decrease the level or effect of chlordiazepoxide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- chloroquine
apalutamide will decrease the level or effect of chloroquine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- chlorpheniramine
apalutamide will decrease the level or effect of chlorpheniramine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ciclesonide inhaled
apalutamide will decrease the level or effect of ciclesonide inhaled by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- cilostazol
apalutamide will decrease the level or effect of cilostazol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- citalopram
apalutamide will decrease the level or effect of citalopram by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of citalopram by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - clarithromycin
apalutamide will decrease the level or effect of clarithromycin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- clobazam
apalutamide will decrease the level or effect of clobazam by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
- clomipramine
apalutamide will decrease the level or effect of clomipramine by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
- clonazepam
apalutamide will decrease the level or effect of clonazepam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- clorazepate
apalutamide will decrease the level or effect of clorazepate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- cobicistat
apalutamide will decrease the level or effect of cobicistat by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- cobimetinib
apalutamide will decrease the level or effect of cobimetinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- cocaine topical
apalutamide will decrease the level or effect of cocaine topical by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- colchicine
apalutamide will decrease the level or effect of colchicine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- conivaptan
apalutamide will decrease the level or effect of conivaptan by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- conjugated estrogens
apalutamide will decrease the level or effect of conjugated estrogens by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- copanlisib
apalutamide will decrease the level or effect of copanlisib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- crizotinib
apalutamide will decrease the level or effect of crizotinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- cyclophosphamide
apalutamide will decrease the level or effect of cyclophosphamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- cyclosporine
apalutamide will decrease the level or effect of cyclosporine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- dabrafenib
apalutamide will decrease the level or effect of dabrafenib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- dantrolene
apalutamide will decrease the level or effect of dantrolene by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- dapsone
apalutamide will decrease the level or effect of dapsone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- daridorexant
apalutamide will decrease the level or effect of daridorexant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- darifenacin
apalutamide will decrease the level or effect of darifenacin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- darolutamide
apalutamide will decrease the level or effect of darolutamide by Other (see comment). Avoid or Use Alternate Drug. Darolutamide is a P-gp and CYP3A4 substrate. Avoid coadminstration of darolutamide with combined P-gp and strong or moderate CYP3A4 inducers.
- darunavir
apalutamide will decrease the level or effect of darunavir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- dasatinib
apalutamide will decrease the level or effect of dasatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- deflazacort
apalutamide will decrease the level or effect of deflazacort by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- dexamethasone
apalutamide will decrease the level or effect of dexamethasone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- dexlansoprazole
apalutamide will decrease the level or effect of dexlansoprazole by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of dexlansoprazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - diazepam
apalutamide will decrease the level or effect of diazepam by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of diazepam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - dihydroergotamine
apalutamide will decrease the level or effect of dihydroergotamine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- dihydroergotamine inhaled
apalutamide will decrease the level or effect of dihydroergotamine inhaled by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- diltiazem
apalutamide will decrease the level or effect of diltiazem by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- disopyramide
apalutamide will decrease the level or effect of disopyramide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- docetaxel
apalutamide will decrease the level or effect of docetaxel by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- doxorubicin
apalutamide will decrease the level or effect of doxorubicin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- doxorubicin liposomal
apalutamide will decrease the level or effect of doxorubicin liposomal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- dronabinol
apalutamide will decrease the level or effect of dronabinol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- dronedarone
apalutamide will decrease the level or effect of dronedarone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- duvelisib
apalutamide will decrease the level or effect of duvelisib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration with a strong CYP3A inducer decreases duvelisib area under the curve (AUC), which may reduce duvelisib efficacy.
- efavirenz
apalutamide will decrease the level or effect of efavirenz by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
efavirenz will decrease the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. No initial dose adjustment - elacestrant
apalutamide will decrease the level or effect of elacestrant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- elbasvir/grazoprevir
apalutamide will decrease the level or effect of elbasvir/grazoprevir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- eletriptan
apalutamide will decrease the level or effect of eletriptan by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- eliglustat
apalutamide will decrease the level or effect of eliglustat by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- elvitegravir
apalutamide will decrease the level or effect of elvitegravir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- elvitegravir/cobicistat/emtricitabine/tenofovir DF
apalutamide will decrease the level or effect of elvitegravir/cobicistat/emtricitabine/tenofovir DF by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- encorafenib
apalutamide will decrease the level or effect of encorafenib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- entrectinib
apalutamide will decrease the level or effect of entrectinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- enzalutamide
apalutamide will decrease the level or effect of enzalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
enzalutamide will decrease the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. - eplerenone
apalutamide will decrease the level or effect of eplerenone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- erdafitinib
apalutamide will decrease the level or effect of erdafitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- ergoloid mesylates
apalutamide will decrease the level or effect of ergoloid mesylates by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ergotamine
apalutamide will decrease the level or effect of ergotamine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- erlotinib
apalutamide will decrease the level or effect of erlotinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- erythromycin base
apalutamide will decrease the level or effect of erythromycin base by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- erythromycin ethylsuccinate
apalutamide will decrease the level or effect of erythromycin ethylsuccinate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- erythromycin lactobionate
apalutamide will decrease the level or effect of erythromycin lactobionate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- erythromycin stearate
apalutamide will decrease the level or effect of erythromycin stearate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- escitalopram
apalutamide will decrease the level or effect of escitalopram by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of escitalopram by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - esomeprazole
apalutamide will decrease the level or effect of esomeprazole by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of esomeprazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - estradiol
apalutamide will decrease the level or effect of estradiol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- estrogens conjugated synthetic
apalutamide will decrease the level or effect of estrogens conjugated synthetic by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- estrogens esterified
apalutamide will decrease the level or effect of estrogens esterified by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- estropipate
apalutamide will decrease the level or effect of estropipate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- eszopiclone
apalutamide will decrease the level or effect of eszopiclone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ethinylestradiol
apalutamide will decrease the level or effect of ethinylestradiol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ethosuximide
apalutamide will decrease the level or effect of ethosuximide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- etoposide
apalutamide will decrease the level or effect of etoposide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- etravirine
apalutamide will decrease the level or effect of etravirine by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of etravirine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
etravirine will decrease the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. - everolimus
apalutamide will decrease the level or effect of everolimus by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- exemestane
apalutamide will decrease the level or effect of exemestane by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- fedratinib
apalutamide will decrease the level or effect of fedratinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Effect of coadministering a strong CYP3A4 inducer with fedratinib has not been studied.
- felbamate
apalutamide will decrease the level or effect of felbamate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- felodipine
apalutamide will decrease the level or effect of felodipine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- fenofibrate
apalutamide will decrease the level or effect of fenofibrate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- fenofibrate micronized
apalutamide will decrease the level or effect of fenofibrate micronized by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- fentanyl
apalutamide will decrease the level or effect of fentanyl by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- fentanyl intranasal
apalutamide will decrease the level or effect of fentanyl intranasal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- fentanyl transdermal
apalutamide will decrease the level or effect of fentanyl transdermal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- fentanyl transmucosal
apalutamide will decrease the level or effect of fentanyl transmucosal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- fexinidazole
apalutamide will increase the level or effect of fexinidazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. CYP450 inducers may significantly increase plasma concentrations of fexinidazole?s active metabolites: fexinidazole sulfoxide (M1) and fexinidazole sulfone (M2). M2 plasma concentrations associated with increased QT prolongation risks.
fexinidazole will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Fexinidazole inhibits CYP3A4. Coadministration may increase risk for adverse effects of CYP3A4 substrates. - finerenone
apalutamide will decrease the level or effect of finerenone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- flibanserin
apalutamide will decrease the level or effect of flibanserin by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of flibanserin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - flurazepam
apalutamide will decrease the level or effect of flurazepam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- flutamide
apalutamide will decrease the level or effect of flutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- fluticasone furoate
apalutamide will decrease the level or effect of fluticasone furoate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- fluticasone inhaled
apalutamide will decrease the level or effect of fluticasone inhaled by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- fosamprenavir
apalutamide will decrease the level or effect of fosamprenavir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- fosaprepitant
apalutamide will decrease the level or effect of fosaprepitant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- fosphenytoin
apalutamide will decrease the level or effect of fosphenytoin by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
- fostamatinib
apalutamide will decrease the level or effect of fostamatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- futibatinib
apalutamide will decrease the level or effect of futibatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of futibatinib with drugs that are dual P-gp and strong CYP3A inducers may decrease futibatinib efficacy.
- ganaxolone
apalutamide will decrease the level or effect of ganaxolone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of ganaxolone with moderate or strong CYP3A4 inducers. If coadministration unavoidable, consider increasing ganaxolone dose; however, do not exceed maximum daily dose for weight.
- gefitinib
apalutamide will decrease the level or effect of gefitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- gilteritinib
apalutamide will decrease the level or effect of gilteritinib by Other (see comment). Avoid or Use Alternate Drug. Gilteritinib is a P-gp and CYP3A4 substrates. Coadministration of gilteritinib with a combined P-gp and strong CYP3A inducer decreases gilteritinib exposure and efficacy.
- glasdegib
apalutamide will decrease the level or effect of glasdegib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of glasdegib with strong CYP3A inducers.
- glecaprevir/pibrentasvir
apalutamide will decrease the level or effect of glecaprevir/pibrentasvir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- guanfacine
apalutamide will decrease the level or effect of guanfacine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- haloperidol
apalutamide will decrease the level or effect of haloperidol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- hydroxyprogesterone caproate (DSC)
apalutamide will decrease the level or effect of hydroxyprogesterone caproate (DSC) by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ibrutinib
apalutamide will decrease the level or effect of ibrutinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- idelalisib
apalutamide will decrease the level or effect of idelalisib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- imatinib
apalutamide will decrease the level or effect of imatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- imipramine
apalutamide will decrease the level or effect of imipramine by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
- indinavir
apalutamide will decrease the level or effect of indinavir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- infigratinib
apalutamide will decrease the level or effect of infigratinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- irinotecan
apalutamide will decrease the level or effect of irinotecan by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- irinotecan liposomal
apalutamide will decrease the level or effect of irinotecan liposomal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- isosorbide dinitrate
apalutamide will decrease the level or effect of isosorbide dinitrate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- isosorbide mononitrate
apalutamide will decrease the level or effect of isosorbide mononitrate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- isradipine
apalutamide will decrease the level or effect of isradipine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- istradefylline
apalutamide will decrease the level or effect of istradefylline by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of istradefylline with strong CYP3A4 inducers.
- itraconazole
apalutamide will decrease the level or effect of itraconazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid concurrent use 2 weeks before and during itraconazole treatment. Evaluate for loss of therapeutic effect if medication must be coadministered.
- ivacaftor
apalutamide will decrease the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ivosidenib
apalutamide will decrease the level or effect of ivosidenib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of ivosidenib with strong CYP3A4 inducers decreased ivosidenib plasma concentrations.
ivosidenib will decrease the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of sensitive CYP3A4 substrates with ivosidenib or replace with alternate therapies. If coadministration is unavoidable, monitor patients for loss of therapeutic effect of these drugs. - ixabepilone
apalutamide will decrease the level or effect of ixabepilone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ixazomib
apalutamide will decrease the level or effect of ixazomib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ketamine
apalutamide will decrease the level or effect of ketamine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ketoconazole
apalutamide will decrease the level or effect of ketoconazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Apalutamide, a strong CYP3A4 inducer, may decrease the exposure of ketoconazole (a CYP3A4 substrate)
- lacosamide
apalutamide will decrease the level or effect of lacosamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- lansoprazole
apalutamide will decrease the level or effect of lansoprazole by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of lansoprazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - lapatinib
apalutamide will decrease the level or effect of lapatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- larotrectinib
apalutamide will decrease the level or effect of larotrectinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of larotrectinib with strong CYP3A4 inducers is unavoidable, double larotrectinib dose. Resume prior larotrectinib dose once CYP3A4 inducer discontinued for 3-5 half-lives.
- lefamulin
apalutamide will decrease the level or effect of lefamulin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of lefamulin with strong or moderate CYP3A inducers unless the benefit outweighs risks. Monitor for reduced efficacy.
- lemborexant
apalutamide will decrease the level or effect of lemborexant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- leniolisib
apalutamide will decrease the level or effect of leniolisib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- letermovir
apalutamide will decrease the level or effect of letermovir by Other (see comment). Avoid or Use Alternate Drug. Coadministration of letermovir with UCT1A1/3 inducers is not recommended.
apalutamide will decrease the level or effect of letermovir by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug. Coadministration of letermovir with P-gp inducers is not recommended. - levomilnacipran
apalutamide will decrease the level or effect of levomilnacipran by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- levonorgestrel intrauterine
apalutamide will decrease the level or effect of levonorgestrel intrauterine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- levonorgestrel oral
apalutamide will decrease the level or effect of levonorgestrel oral by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- linagliptin
apalutamide will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- lomitapide
apalutamide will decrease the level or effect of lomitapide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- lopinavir
apalutamide will decrease the level or effect of lopinavir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- lorlatinib
lorlatinib will decrease the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- losartan
apalutamide will decrease the level or effect of losartan by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- lovastatin
apalutamide will decrease the level or effect of lovastatin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- lumacaftor/ivacaftor
apalutamide will decrease the level or effect of lumacaftor/ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- lumateperone
apalutamide will decrease the level or effect of lumateperone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- lumefantrine
apalutamide will decrease the level or effect of lumefantrine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated.
- lurasidone
apalutamide will decrease the level or effect of lurasidone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- lurbinectedin
apalutamide will decrease the level or effect of lurbinectedin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- macimorelin
apalutamide will decrease the level or effect of macimorelin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- macitentan
apalutamide will decrease the level or effect of macitentan by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- maraviroc
apalutamide will decrease the level or effect of maraviroc by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- marijuana
apalutamide will decrease the level or effect of marijuana by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- medroxyprogesterone
apalutamide will decrease the level or effect of medroxyprogesterone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- mefloquine
apalutamide will decrease the level or effect of mefloquine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- mestranol
apalutamide will decrease the level or effect of mestranol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- metaxalone
apalutamide will decrease the level or effect of metaxalone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- methadone
apalutamide will decrease the level or effect of methadone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- methsuximide
apalutamide will decrease the level or effect of methsuximide by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
- methylergonovine
apalutamide will decrease the level or effect of methylergonovine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- methylprednisolone
apalutamide will decrease the level or effect of methylprednisolone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- midazolam
apalutamide will decrease the level or effect of midazolam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- midostaurin
apalutamide will decrease the level or effect of midostaurin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- mifepristone
apalutamide will decrease the level or effect of mifepristone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
mifepristone will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. No initial dose adjustment - mirtazapine
apalutamide will decrease the level or effect of mirtazapine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- mobocertinib
apalutamide will decrease the level or effect of mobocertinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- modafinil
apalutamide will decrease the level or effect of modafinil by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of modafinil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - montelukast
apalutamide will decrease the level or effect of montelukast by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- naldemedine
apalutamide will decrease the level or effect of naldemedine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- naloxegol
apalutamide will decrease the level or effect of naloxegol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- nefazodone
apalutamide will decrease the level or effect of nefazodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- nelfinavir
apalutamide will decrease the level or effect of nelfinavir by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of nelfinavir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - netupitant/palonosetron
apalutamide will decrease the level or effect of netupitant/palonosetron by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- nevirapine
apalutamide will decrease the level or effect of nevirapine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- nicardipine
apalutamide will decrease the level or effect of nicardipine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- nifedipine
apalutamide will decrease the level or effect of nifedipine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- nilotinib
apalutamide will decrease the level or effect of nilotinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- nimodipine
apalutamide will decrease the level or effect of nimodipine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- nisoldipine
apalutamide will decrease the level or effect of nisoldipine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- norethindrone
apalutamide will decrease the level or effect of norethindrone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- norethindrone acetate
apalutamide will decrease the level or effect of norethindrone acetate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- olaparib
apalutamide will decrease the level or effect of olaparib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- olutasidenib
apalutamide will decrease the level or effect of olutasidenib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Strong or moderate CYP3A inducers decrease olutasidenib (a CYP3A4 substrate) plasma concentrations and efficacy.
- omaveloxolone
apalutamide will decrease the level or effect of omaveloxolone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- ombitasvir/paritaprevir/ritonavir & dasabuvir (DSC)
apalutamide will decrease the level or effect of ombitasvir/paritaprevir/ritonavir & dasabuvir (DSC) by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- omeprazole
apalutamide will decrease the level or effect of omeprazole by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of omeprazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - ondansetron
apalutamide will decrease the level or effect of ondansetron by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- osimertinib
apalutamide will decrease the level or effect of osimertinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ospemifene
apalutamide will decrease the level or effect of ospemifene by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of ospemifene by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - oxycodone
apalutamide will decrease the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- paclitaxel
apalutamide will decrease the level or effect of paclitaxel by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- paclitaxel protein bound
apalutamide will decrease the level or effect of paclitaxel protein bound by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- palbociclib
apalutamide will decrease the level or effect of palbociclib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- palifermin
palifermin increases toxicity of apalutamide by Other (see comment). Avoid or Use Alternate Drug. Comment: Palifermin should not be administered within 24 hr before, during infusion of, or within 24 hr after administration of antineoplastic agents. Coadministration of palifermin within 24 hr of chemotherapy resulted in increased severity and duration of oral mucositis.
- panobinostat
apalutamide will decrease the level or effect of panobinostat by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- pantoprazole
apalutamide will decrease the level or effect of pantoprazole by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
- paricalcitol
apalutamide will decrease the level or effect of paricalcitol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- pazopanib
apalutamide will decrease the level or effect of pazopanib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- pemigatinib
apalutamide will decrease the level or effect of pemigatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- pentamidine
apalutamide will decrease the level or effect of pentamidine by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
- perampanel
apalutamide will decrease the level or effect of perampanel by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- pexidartinib
apalutamide will decrease the level or effect of pexidartinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- phenobarbital
apalutamide will decrease the level or effect of phenobarbital by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
- phenytoin
apalutamide will decrease the level or effect of phenytoin by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
- pimavanserin
apalutamide will decrease the level or effect of pimavanserin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- pimozide
apalutamide will decrease the level or effect of pimozide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- pomalidomide
apalutamide will decrease the level or effect of pomalidomide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ponatinib
apalutamide will decrease the level or effect of ponatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ponesimod
apalutamide will decrease the level or effect of ponesimod by Other (see comment). Avoid or Use Alternate Drug. Not recommended. Based on limited data, coadministration of strong CYP3A4 and UGT1A1 inducers (eg, rifampin, phenytoin, carbamazepine) may decrease systemic exposure of ponesimod. The clinical relevance is unclear.
- pralsetinib
apalutamide will decrease the level or effect of pralsetinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If unable to avoid, double current pralsetinib dose starting on Day 7 of coadministration with strong CYP3A inducer. After inducer has been discontinued for at least 14 days, resume previous pralsetinib dose.
- praziquantel
apalutamide will decrease the level or effect of praziquantel by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- pretomanid
apalutamide will decrease the level or effect of pretomanid by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Pretomanid is a CYP3A4 substrate. Avoid coadministration of strong or moderate CYP3A4 inducers.
- primaquine
apalutamide will decrease the level or effect of primaquine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- progesterone intravaginal gel
apalutamide will decrease the level or effect of progesterone intravaginal gel by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- progesterone micronized
apalutamide will decrease the level or effect of progesterone micronized by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of progesterone micronized by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - progesterone, natural
apalutamide will decrease the level or effect of progesterone, natural by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- quazepam
apalutamide will decrease the level or effect of quazepam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- quetiapine
apalutamide will decrease the level or effect of quetiapine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- quinidine
apalutamide will decrease the level or effect of quinidine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- quinine
apalutamide will decrease the level or effect of quinine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- rabeprazole
apalutamide will decrease the level or effect of rabeprazole by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of rabeprazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - ranolazine
apalutamide will decrease the level or effect of ranolazine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- regorafenib
apalutamide will decrease the level or effect of regorafenib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- repaglinide
apalutamide will decrease the level or effect of repaglinide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ribociclib
apalutamide will decrease the level or effect of ribociclib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
ribociclib will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. - rifabutin
apalutamide will decrease the level or effect of rifabutin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- rimegepant
apalutamide will decrease the level or effect of rimegepant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- riociguat
apalutamide will decrease the level or effect of riociguat by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ripretinib
apalutamide will decrease the level or effect of ripretinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration with a strong CYP3A inhibitor will decrease systemic exposure to ripretinib and its active metabolite (DP-5439), which may decrease risk of adverse reactions.
- ritonavir
apalutamide will decrease the level or effect of ritonavir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- rivaroxaban
apalutamide will decrease the level or effect of rivaroxaban by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- roflumilast
apalutamide will decrease the level or effect of roflumilast by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- rolapitant
apalutamide will decrease the level or effect of rolapitant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- romidepsin
apalutamide will decrease the level or effect of romidepsin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ropivacaine
apalutamide will decrease the level or effect of ropivacaine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ruxolitinib
apalutamide will decrease the level or effect of ruxolitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ruxolitinib topical
apalutamide will decrease the level or effect of ruxolitinib topical by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- salmeterol
apalutamide will decrease the level or effect of salmeterol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- saquinavir
apalutamide will decrease the level or effect of saquinavir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- saxagliptin
apalutamide will decrease the level or effect of saxagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- selpercatinib
apalutamide will decrease the level or effect of selpercatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- selumetinib
apalutamide will decrease the level or effect of selumetinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- sertraline
apalutamide will decrease the level or effect of sertraline by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
- sildenafil
apalutamide will decrease the level or effect of sildenafil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- simvastatin
apalutamide will decrease the level or effect of simvastatin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- siponimod
apalutamide will decrease the level or effect of siponimod by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of siponimod with a drug that causes moderate CYP2C9 plus a moderate or strong CYP3A4 inducer is not recommended. Coadministration with moderate or strong CYP3A4 inducers alone is not recommended for patients with CYP2C9*1/*3 and*2/*3 genotype.
- sirolimus
apalutamide will decrease the level or effect of sirolimus by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- sofosbuvir/velpatasvir
apalutamide will decrease the level or effect of sofosbuvir/velpatasvir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- solifenacin
apalutamide will decrease the level or effect of solifenacin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- sonidegib
apalutamide will decrease the level or effect of sonidegib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- sorafenib
apalutamide will decrease the level or effect of sorafenib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- sotorasib
apalutamide will decrease the level or effect of sotorasib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- sparsentan
apalutamide will decrease the level or effect of sparsentan by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- stiripentol
apalutamide will decrease the level or effect of stiripentol by Other (see comment). Avoid or Use Alternate Drug. Apalutamide is a strong CYP3A4/CYP2C19 inducer. Stiripentol is a CYP3A4/CYP2C19 substrate. If unable to avoid coadministration, monitor closely and consider stiripentol dose increase if needed.
apalutamide will decrease the level or effect of stiripentol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. - sufentanil
apalutamide will decrease the level or effect of sufentanil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- sunitinib
apalutamide will decrease the level or effect of sunitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- suvorexant
apalutamide will decrease the level or effect of suvorexant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tacrolimus
apalutamide will decrease the level or effect of tacrolimus by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tadalafil
apalutamide will decrease the level or effect of tadalafil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tamoxifen
apalutamide will decrease the level or effect of tamoxifen by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tamsulosin
apalutamide will decrease the level or effect of tamsulosin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tasimelteon
apalutamide will decrease the level or effect of tasimelteon by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tazemetostat
apalutamide will decrease the level or effect of tazemetostat by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- temsirolimus
apalutamide will decrease the level or effect of temsirolimus by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- teniposide
apalutamide will decrease the level or effect of teniposide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tetracycline
apalutamide will decrease the level or effect of tetracycline by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tezacaftor
apalutamide will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- theophylline
apalutamide will decrease the level or effect of theophylline by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tiagabine
apalutamide will decrease the level or effect of tiagabine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ticagrelor
apalutamide will decrease the level or effect of ticagrelor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- ticlopidine
apalutamide will decrease the level or effect of ticlopidine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tinidazole
apalutamide will decrease the level or effect of tinidazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tipranavir
apalutamide will decrease the level or effect of tipranavir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tivozanib
apalutamide will decrease the level or effect of tivozanib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- tofacitinib
apalutamide will decrease the level or effect of tofacitinib by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of tofacitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - tolterodine
apalutamide will decrease the level or effect of tolterodine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tolvaptan
apalutamide will decrease the level or effect of tolvaptan by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- toremifene
apalutamide will decrease the level or effect of toremifene by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- trabectedin
apalutamide will decrease the level or effect of trabectedin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- tramadol
apalutamide will decrease the level or effect of tramadol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- trazodone
apalutamide will decrease the level or effect of trazodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- triazolam
apalutamide will decrease the level or effect of triazolam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- trimethoprim
apalutamide will decrease the level or effect of trimethoprim by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- trimipramine
apalutamide will decrease the level or effect of trimipramine by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of trimipramine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - tucatinib
apalutamide will decrease the level or effect of tucatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- ubrogepant
apalutamide will decrease the level or effect of ubrogepant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- ulipristal
apalutamide will decrease the level or effect of ulipristal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- umeclidinium bromide/vilanterol inhaled
apalutamide will decrease the level or effect of umeclidinium bromide/vilanterol inhaled by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- upadacitinib
apalutamide will decrease the level or effect of upadacitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid upadacitinib coadministration with strong CYP3A4 inducers.
- valbenazine
apalutamide will decrease the level or effect of valbenazine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- vandetanib
apalutamide will decrease the level or effect of vandetanib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- vardenafil
apalutamide will decrease the level or effect of vardenafil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- velpatasvir
apalutamide will decrease the level or effect of velpatasvir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- vemurafenib
apalutamide will decrease the level or effect of vemurafenib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- venetoclax
apalutamide will decrease the level or effect of venetoclax by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- venlafaxine
apalutamide will decrease the level or effect of venlafaxine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- verapamil
apalutamide will decrease the level or effect of verapamil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- vilanterol/fluticasone furoate inhaled
apalutamide will decrease the level or effect of vilanterol/fluticasone furoate inhaled by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- vilazodone
apalutamide will decrease the level or effect of vilazodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- vinblastine
apalutamide will decrease the level or effect of vinblastine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- vincristine
apalutamide will decrease the level or effect of vincristine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- vincristine liposomal
apalutamide will decrease the level or effect of vincristine liposomal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- vinorelbine
apalutamide will decrease the level or effect of vinorelbine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- voclosporin
apalutamide will decrease the level or effect of voclosporin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- vonoprazan
apalutamide will decrease the level or effect of vonoprazan by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- vorapaxar
apalutamide will decrease the level or effect of vorapaxar by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- voriconazole
apalutamide will decrease the level or effect of voriconazole by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of voriconazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed. - vortioxetine
apalutamide will decrease the level or effect of vortioxetine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- voxelotor
apalutamide will decrease the level or effect of voxelotor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Voxelotor is primarily metabolized by CYP3A4. Avoid coadministration with moderate or strong CYP3A4 inducers. If unable to avoid coadministration, increase voxelotor dose (see Dosage Modifications).
voxelotor will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Voxelotor increases systemic exposure of sensitive CYP3A4 substrates. Avoid coadministration with sensitive CYP3A4 substrates with a narrow therapeutic index. Consider dose reduction of the sensitive CYP3A4 substrate(s) if unable to avoid. - voxilaprevir
apalutamide will decrease the level or effect of voxilaprevir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- zanubrutinib
apalutamide will decrease the level or effect of zanubrutinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- zolpidem
apalutamide will decrease the level or effect of zolpidem by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- zonisamide
apalutamide will decrease the level or effect of zonisamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
Monitor Closely (156)
- abiraterone
abiraterone will increase the level or effect of apalutamide by Other (see comment). Use Caution/Monitor. Coadministration of apalutamide with strong CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- acetaminophen
apalutamide will decrease the level or effect of acetaminophen by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- ambrisentan
apalutamide will decrease the level or effect of ambrisentan by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- atazanavir
atazanavir will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- atogepant
apalutamide will decrease the level or effect of atogepant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Recommended atogepant dosage with concomitant use of strong or moderate CYP3A4 inducers is 30 mg or 60 mg qDay.
- atorvastatin
apalutamide will decrease the level or effect of atorvastatin by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and weakly induces BCRP and OATP1B1. Drugs that are eliminated via these pathways may have decreased systemic exposure if coadministered with apalutamide.
- belinostat
apalutamide will decrease the level or effect of belinostat by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- belumosudil
apalutamide will decrease the level or effect of belumosudil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Increase belumosudil dosage to 200 mg PO BID when coadministered with strong CYP3A inducers.
- belzutifan
belzutifan will decrease the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. If unable to avoid coadministration of belzutifan with sensitive CYP3A4 substrates, consider increasing the sensitive CYP3A4 substrate dose in accordance with its prescribing information.
- benzhydrocodone/acetaminophen
apalutamide will decrease the level or effect of benzhydrocodone/acetaminophen by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with benzhydrocodone (prodrug of hydrocodone); plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression.
- bosentan
apalutamide will decrease the level or effect of bosentan by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of bosentan by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates. - buprenorphine
apalutamide will decrease the level or effect of buprenorphine by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- buprenorphine buccal
apalutamide will decrease the level or effect of buprenorphine buccal by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- buprenorphine subdermal implant
apalutamide will decrease the level or effect of buprenorphine subdermal implant by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- buprenorphine transdermal
apalutamide will decrease the level or effect of buprenorphine transdermal by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- buprenorphine, long-acting injection
apalutamide will decrease the level or effect of buprenorphine, long-acting injection by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- cannabidiol
cannabidiol will increase the level or effect of apalutamide by decreasing metabolism. Modify Therapy/Monitor Closely. Cannabidiol may potentially inhibit CYP2C8 activity. Consider reducing the dose when concomitantly using CYP2C8 substrates.
- carbamazepine
carbamazepine will decrease the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. No initial dose adjustment
- carvedilol
apalutamide will decrease the level or effect of carvedilol by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of carvedilol by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates. - caspofungin
apalutamide will decrease the level or effect of caspofungin by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- celecoxib
apalutamide will decrease the level or effect of celecoxib by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- cenobamate
cenobamate will decrease the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Increase dose of CYP3A4 substrate, as needed, when coadministered with cenobamate.
- chloramphenicol
chloramphenicol will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. No initial dose adjustment
- chlorothiazide
apalutamide will decrease the level or effect of chlorothiazide by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- chlorpropamide
apalutamide will decrease the level or effect of chlorpropamide by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- cimetidine
apalutamide will decrease the level or effect of cimetidine by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- clarithromycin
clarithromycin will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- clopidogrel
clopidogrel will increase the level or effect of apalutamide by Other (see comment). Use Caution/Monitor. Coadministration of apalutamide with strong CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- cobicistat
cobicistat will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- conivaptan
conivaptan will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- dabrafenib
dabrafenib will decrease the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. No initial dose adjustment
- dapsone
apalutamide will decrease the level or effect of dapsone by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- darunavir
darunavir will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- daunorubicin
apalutamide will decrease the level or effect of daunorubicin by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- diazepam intranasal
apalutamide will decrease the level or effect of diazepam intranasal by affecting hepatic enzyme CYP2C19 metabolism. Use Caution/Monitor. Strong or moderate CYP2C19 inducers may increase rate of diazepam elimination; therefore, efficacy of diazepam may be decreased.
apalutamide will decrease the level or effect of diazepam intranasal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Strong or moderate CYP3A4 inducers may increase rate of diazepam elimination; therefore, efficacy of diazepam may be decreased. - diclofenac
apalutamide will decrease the level or effect of diclofenac by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- dipyridamole
apalutamide will decrease the level or effect of dipyridamole by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- doxorubicin
apalutamide will decrease the level or effect of doxorubicin by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- doxorubicin liposomal
apalutamide will decrease the level or effect of doxorubicin liposomal by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- dronabinol
apalutamide will decrease the level or effect of dronabinol by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- duvelisib
apalutamide will decrease the level or effect of duvelisib by Other (see comment). Use Caution/Monitor. Coadministration of duvelisib (a BCRP substrate) with a BCRP transport inducer may decrease levels or effects of duvelisib.
- elagolix
apalutamide will decrease the level or effect of elagolix by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.
elagolix will decrease the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Elagolix is a weak-to-moderate CYP3A4 inducer. Monitor CYP3A substrates if coadministered. Consider increasing CYP3A substrate dose if needed. - elbasvir/grazoprevir
apalutamide will decrease the level or effect of elbasvir/grazoprevir by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- eluxadoline
apalutamide will decrease the level or effect of eluxadoline by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- elvitegravir/cobicistat/emtricitabine/tenofovir DF
elvitegravir/cobicistat/emtricitabine/tenofovir DF will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- enalapril
apalutamide will decrease the level or effect of enalapril by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- encorafenib
encorafenib, apalutamide. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Encorafenib both inhibits and induces CYP3A4 at clinically relevant plasma concentrations. Coadministration of encorafenib with sensitive CYP3A4 substrates may result in increased toxicity or decreased efficacy of these agents.
- enfortumab vedotin
apalutamide will decrease the level or effect of enfortumab vedotin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.
- estradiol
apalutamide will decrease the level or effect of estradiol by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- estradiol vaginal
apalutamide will decrease the level or effect of estradiol vaginal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.
- etoposide
apalutamide will decrease the level or effect of etoposide by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- etravirine
apalutamide will decrease the level or effect of etravirine by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- ezetimibe
apalutamide will decrease the level or effect of ezetimibe by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and weakly induces OATP1B1 and may decrease systemic exposure of drugs that are substrates of both UGT and OATP1B1.
- febuxostat
apalutamide will decrease the level or effect of febuxostat by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- fedratinib
fedratinib will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Adjust dose of drugs that are CYP3A4 substrates as necessary.
- fexofenadine
apalutamide will decrease the level or effect of fexofenadine by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- fluoxetine
apalutamide will decrease the level or effect of fluoxetine by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- fluvastatin
apalutamide will decrease the level or effect of fluvastatin by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of fluvastatin by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and weakly induces BCRP and OATP1B1. Drugs that are eliminated via these pathways may have decreased systemic exposure if coadministered with apalutamide. - fosamprenavir
fosamprenavir will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- fosphenytoin
apalutamide will decrease the level or effect of fosphenytoin by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
fosphenytoin will decrease the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. No initial dose adjustment - gallium Ga 68 PSMA-11
apalutamide will decrease the level or effect of gallium Ga 68 PSMA-11 by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Androgen deprivation therapy and other therapies targeting the androgen pathway may result in changes in the uptake of gallium Ga 68 PSMA-11 in prostate cancer. The effect of ADT on the performance of gallium Ga 68 PSMA-11 is unknown.
- gemfibrozil
gemfibrozil will increase the level or effect of apalutamide by Other (see comment). Use Caution/Monitor. Coadministration of apalutamide with strong CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
apalutamide will decrease the level or effect of gemfibrozil by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates. - glecaprevir/pibrentasvir
apalutamide will decrease the level or effect of glecaprevir/pibrentasvir by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- glimepiride
apalutamide will decrease the level or effect of glimepiride by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- glipizide
apalutamide will decrease the level or effect of glipizide by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- glyburide
apalutamide will decrease the level or effect of glyburide by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of glyburide by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates. - grapefruit
grapefruit will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- hydrocodone
apalutamide will decrease the level or effect of hydrocodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Caution when discontinuing CYP3A4 inducers that are coadministered with hydrocodone; plasma concentrations of hydrocodone may increase and can result in potentially fatal respiratory depression
- idelalisib
idelalisib will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- ifosfamide
apalutamide increases effects of ifosfamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- imatinib
imatinib will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
apalutamide will decrease the level or effect of imatinib by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of imatinib by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates. - indinavir
indinavir will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- irinotecan
apalutamide will decrease the level or effect of irinotecan by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and weakly induces BCRP and may decrease systemic exposure of drugs that are substrates of both UGT and BCRP.
- irinotecan liposomal
apalutamide will decrease the level or effect of irinotecan liposomal by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and weakly induces BCRP and may decrease systemic exposure of drugs that are substrates of both UGT and BCRP.
- isoniazid
isoniazid will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- istradefylline
istradefylline will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Istradefylline 40 mg/day increased peak levels and AUC of CYP3A4 substrates in clinical trials. This effect was not observed with istradefylline 20 mg/day. Consider dose reduction of sensitive CYP3A4 substrates.
- itraconazole
itraconazole will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- ketamine
apalutamide will decrease the level or effect of ketamine by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- lacosamide
apalutamide will decrease the level or effect of lacosamide by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- lapatinib
apalutamide will decrease the level or effect of lapatinib by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- ledipasvir/sofosbuvir
apalutamide will decrease the level or effect of ledipasvir/sofosbuvir by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- leflunomide
apalutamide will decrease the level or effect of leflunomide by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- lenacapavir
lenacapavir will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Lencapavir may increase CYP3A4 substrates initiated within 9 months after last SC dose of lenacapavir, which may increase potential risk of adverse reactions of CYP3A4 substrates.
- lenvatinib
apalutamide will decrease the level or effect of lenvatinib by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- lesinurad
apalutamide will decrease the level or effect of lesinurad by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- letermovir
apalutamide will decrease the level or effect of letermovir by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- levamlodipine
apalutamide will decrease the level or effect of levamlodipine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. No information is available on the quantitative effects of CYP3A4 inducers on amlodipine. Closely monitor blood pressure when amlodipine is coadministered with CYP3A4 inducers.
- levoketoconazole
apalutamide will decrease the level or effect of levoketoconazole by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- levothyroxine
apalutamide will decrease the level or effect of levothyroxine by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- lopinavir
lopinavir will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- losartan
apalutamide will decrease the level or effect of losartan by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
apalutamide will decrease the level or effect of losartan by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates. - lovastatin
apalutamide will decrease the level or effect of lovastatin by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- mestranol
apalutamide will decrease the level or effect of mestranol by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- methotrexate
apalutamide will decrease the level or effect of methotrexate by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and OATP1B1 and may decrease systemic exposure of drugs that are substrates of both BCRP and OATP1B1.
- mitoxantrone
apalutamide will decrease the level or effect of mitoxantrone by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- montelukast
apalutamide will decrease the level or effect of montelukast by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- morphine
apalutamide will decrease the level or effect of morphine by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- naltrexone
apalutamide will decrease the level or effect of naltrexone by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- nateglinide
apalutamide will decrease the level or effect of nateglinide by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- nefazodone
nefazodone will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- nelfinavir
nelfinavir will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- nicardipine
nicardipine will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- nitrofurantoin
apalutamide will decrease the level or effect of nitrofurantoin by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- oliceridine
apalutamide will decrease the level or effect of oliceridine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. If coadministration with a CYP3A4 inducer is necessary, consider increasing oliceridine dose until stable drug effects are achieved; monitor for signs of opioid withdrawal. If inducer is discontinued, consider oliceridine dosage reduction and monitor for signs of respiratory depression.
- olmesartan
apalutamide will decrease the level or effect of olmesartan by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- omaveloxolone
omaveloxolone will increase the level or effect of apalutamide by Other (see comment). Use Caution/Monitor. Omaveloxolone may reduce systemic exposure of sensitive CYP2C8 substrates. Check prescribing information of substrate if dosage modification is needed.
- ombitasvir/paritaprevir/ritonavir & dasabuvir (DSC)
apalutamide will decrease the level or effect of ombitasvir/paritaprevir/ritonavir & dasabuvir (DSC) by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- osilodrostat
apalutamide will decrease the level or effect of osilodrostat by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Monitor cortisol concentration and patient?s signs and symptoms during coadministration or discontinuation with strong CYP3A4 inducers. Adjust dose of osilodrostat if necessary.
- osimertinib
apalutamide will decrease the level or effect of osimertinib by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- ospemifene
apalutamide will decrease the level or effect of ospemifene by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- pantoprazole
apalutamide will decrease the level or effect of pantoprazole by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- pazopanib
apalutamide will decrease the level or effect of pazopanib by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- penicillin G benzathine
apalutamide will decrease the level or effect of penicillin G benzathine by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- phenytoin
apalutamide will decrease the level or effect of phenytoin by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- pitavastatin
apalutamide will decrease the level or effect of pitavastatin by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and OATP1B1 and may decrease systemic exposure of drugs that are substrates of both BCRP and OATP1B1.
- pitolisant
apalutamide will decrease the level or effect of pitolisant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Pitolisant exposure is decreased by 50% if coadministered with strong CYP3A4 inducers. For patients stable on pitolisant 8.9 mg/day or 17.8 mg/day, double the pitolisant dose (ie, 17.8 mg or 35.6 mg, respectively) over 7 days. If the strong CYP3A4 inducer is discontinued, reduce pitolisant dosage by half.
- polatuzumab vedotin
apalutamide will decrease the level or effect of polatuzumab vedotin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Polatuzumab undergoes catabolism to small peptides, amino acids, monomethyl auristatin E (MMAE), and unconjugated MMAE-related catabolites. MMAE is a CYP3A4 substrate. Coadministration of polatuzumab vedotin with a strong CYP3A4 inducer may decrease unconjugated MMAE AUC.
- ponesimod
ponesimod and apalutamide both increase immunosuppressive effects; risk of infection. Use Caution/Monitor. Caution if coadministered because of additive immunosuppressive effects during such therapy and in the weeks following administration. When switching from drugs with prolonged immune effects, consider the half-life and mode of action of these drugs to avoid unintended additive immunosuppressive effects.
- posaconazole
posaconazole will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- pravastatin
apalutamide will decrease the level or effect of pravastatin by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- propofol
apalutamide will decrease the level or effect of propofol by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- raloxifene
apalutamide will decrease the level or effect of raloxifene by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- raltegravir
apalutamide will decrease the level or effect of raltegravir by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- repaglinide
apalutamide will decrease the level or effect of repaglinide by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- rifampin
apalutamide will decrease the level or effect of rifampin by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- riociguat
apalutamide will decrease the level or effect of riociguat by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- ritonavir
ritonavir will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- rosuvastatin
apalutamide will decrease the level or effect of rosuvastatin by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and weakly induces BCRP and OATP1B1. Drugs that are eliminated via these pathways may have decreased systemic exposure if coadministered with apalutamide.
- rucaparib
rucaparib will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust dosage of CYP3A4 substrates, if clinically indicated.
- saquinavir
saquinavir will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- selexipag
apalutamide will decrease the level or effect of selexipag by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- simvastatin
apalutamide will decrease the level or effect of simvastatin by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and weakly induces BCRP and may decrease systemic exposure of drugs that are substrates of both UGT and BCRP.
- siponimod
siponimod and apalutamide both increase immunosuppressive effects; risk of infection. Use Caution/Monitor. Caution if coadministered because of additive immunosuppressive effects during such therapy and in the weeks following administration. When switching from drugs with prolonged immune effects, consider the half-life and mode of action of these drugs to avoid unintended additive immunosuppressive effects.
- sofosbuvir
apalutamide will decrease the level or effect of sofosbuvir by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- stiripentol
stiripentol, apalutamide. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Stiripentol is a CYP3A4 inhibitor and inducer. Monitor CYP3A4 substrates coadministered with stiripentol for increased or decreased effects. CYP3A4 substrates may require dosage adjustment.
stiripentol will increase the level or effect of apalutamide by Other (see comment). Modify Therapy/Monitor Closely. Stiripentol is a CYP2C8 inhibitor. Consider dosage reduction for CYP2C8 substrates if adverse effects are experienced when coadministered. - sufentanil SL
apalutamide decreases effects of sufentanil SL by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration of CYP3A4 inducers may decrease sufentanil levels and efficacy, possibly precipitating withdrawal syndrome in patients who have developed physical dependence to sufentanil. Discontinuation of concomitantly used CYP3A4 inducers may increase sufentanil plasma concentration.
- sulfadiazine
apalutamide will decrease the level or effect of sulfadiazine by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- sulfasalazine
apalutamide will decrease the level or effect of sulfasalazine by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- tamoxifen
apalutamide will decrease the level or effect of tamoxifen by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- tazemetostat
tazemetostat will decrease the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.
- tecovirimat
tecovirimat will increase the level or effect of apalutamide by affecting hepatic enzyme CYP2C19 metabolism. Use Caution/Monitor. Tecovirimat is a weak inhibitor of CYP2C8 and CYP2C19. Monitor for adverse effects if coadministered with sensitive substrates of these enzymes.
tecovirimat will decrease the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Tecovirimat is a weak CYP3A4 inducer. Monitor sensitive CYP3A4 substrates for effectiveness if coadministered. - telmisartan
apalutamide will decrease the level or effect of telmisartan by increasing elimination. Use Caution/Monitor. Apalutamide induces UGT and may decrease systemic exposure of drugs that are UGT substrates.
- tenofovir AF
apalutamide will decrease the level or effect of tenofovir AF by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- tenofovir DF
apalutamide will decrease the level or effect of tenofovir DF by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- terbinafine
apalutamide will decrease the level or effect of terbinafine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.
- tipranavir
tipranavir will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
- tolbutamide
apalutamide will decrease the level or effect of tolbutamide by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- topotecan
apalutamide will decrease the level or effect of topotecan by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- torsemide
apalutamide will decrease the level or effect of torsemide by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- trimethoprim
apalutamide will decrease the level or effect of trimethoprim by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
- valsartan
apalutamide will decrease the level or effect of valsartan by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces OATP1B1 and may decrease systemic exposure of drugs that are OATP1B1 substrates.
- velpatasvir
apalutamide will decrease the level or effect of velpatasvir by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- vemurafenib
apalutamide will decrease the level or effect of vemurafenib by increasing elimination. Use Caution/Monitor. Apalutamide weakly induces BCRP and may decrease systemic exposure of drugs that are BCRP substrates.
- voriconazole
voriconazole will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration of apalutamide with strong CYP3A4 or CYP2C8 inhibitors does not require initial dosage modification; however, dose reduction may be needed based on tolerability.
apalutamide will decrease the level or effect of voriconazole by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered. - warfarin
apalutamide will decrease the level or effect of warfarin by affecting hepatic enzyme CYP2C9/10 metabolism. Modify Therapy/Monitor Closely.
- zafirlukast
apalutamide will decrease the level or effect of zafirlukast by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Coadministration of apalutamide, a weak CYP2C9 inducer, with drugs that are CYP2C9 substrates can result in lower exposure to these medications. Evaluate for loss of therapeutic effect if medication must be coadministered.
Minor (4)
- acetazolamide
acetazolamide will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- anastrozole
anastrozole will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- cyclophosphamide
cyclophosphamide will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- larotrectinib
larotrectinib will increase the level or effect of apalutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
Adverse Effects
>10% (All Grades)
nmCRPC
- Hypercholesterolemia, nonfasting (76%)
- Anemia (70%)
- Hyperglycemia (70%)
- Hypertriglyceridemia, nonfasting (67%)
- Leukopenia (47%)
- Lymphopenia (41%)
- Fatigue (39%)
- Hyperkalemia (32%)
- Hypertension (25%)
- Rash (24%)
- Diarrhea (20%)
- Nausea (18%)
- Arthralgia (16%)
- Fall (16%)
- Weight decreased (16%)
- Hot flush (14%)
- Fracture (12%)
- Decreased appetite (12%)
- Peripheral edema (11%)
mCSPC
- Rash (28%)
- Decreased WBC (27%)
- Fatigue (26%)
- Hot flush (23%)
- Hypertension (18%)
- Arthralgia (17%)
- Pruritus (11%)
>10% (Grades 3-4)
nmCRPC
- Hypertension (14%)
1-10% (All Grades)
nmCRPC
- Hypothyroidism (8%)
- Pruritus (6.2%)
- Cerebrovascular and ischemic heart disease (3.7%)
- Heart failure (2.2%)
1-10% (Grades 3-4)
nmCRPC
- Rash (5%)
- Fracture (3%)
- Fall (2%)
- Hypertriglyceridemia, nonfasting (2%)
- Lymphopenia (2%)
- Hyperkalemia (2%)
- Hyperglycemia (2%)
- Fatigue (1%)
- Weight decreased (1%)
- Diarrhea (1%)
- mCSPC H4
- Hypertension (8%)
- Rash (6%)
- Fatigue (3%)
- Hypertriglyceridemia (3%)
<1% (Grades 3-4)
nmCRPC
- Anemia (0.4%)
- Leukopenia (0.3%)
- Appetite decreased (0.1%)
- Hypercholesterolemia, nonfasting (0.1%)
mCSPC
- Pruritus (<1%)
- Arthralgia (0.4%)
- Decreased WBC (0.4%)
Postmarketing Reports
Respiratory, thoracic and mediastinal disorders: Interstitial lung disease
Skin and subcutaneous tissue disorders: Stevens-Johnson syndrome/toxic epidermal necrolysis
Warnings
Contraindications
None
Cautions
Cerebrovascular and ischemic cardiovascular events, including events leading to death reported; monitor for signs and symptoms of ischemic heart disease and cerebrovascular disorders; optimize management of cardiovascular risk factors, such as hypertension, diabetes, or dyslipidemia; consider discontinuing if Grade 3 or 4 events occur
Falls and fractures reported; evaluate patient for risk; monitor and manage patients at risk for fractures according to established treatment guidelines and consider use of bone-targeted agents; falls were not associated with loss of consciousness or seizure
Seizures reported; permanently discontinue if a seizure occurs during treatment; unknown whether anticonvulsants will prevent seizures with apalutamide; there is no clinical experience in re-administering therapy to patients who experienced seizure
Advise patients of risk of developing a seizure while on therapy and harm, to themselves or others, that could occur from sudden loss of memory while engaging in activities
Based on its mechanism of action, apalutamide can cause fetal harm and loss of pregnancy if administered to pregnant women
Cutaneous adverse reactions
- Fatal and life-threatening cases of severe cutaneous adverse reactions (SCARs), including Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS), occurred in patients receiving this drug
- Monitor patients for development of SCARs; advise patients of signs and symptoms of SCARs (eg, a prodrome of fever, flu-like symptoms, mucosal lesions, progressive skin rash, or lymphadenopathy)
- If SCAR is suspected, interrupt therapy until etiology of reaction has been determined; consultation with a dermatologist recommended; if a SCAR is confirmed, or for other grade 4 skin reactions, permanently discontinue therapy
Drug interaction overview
-
Strong CYP2C8 or CYP3A4 inhibitors
- Coadministration with strong CYP2C8 or CYP3A4 inhibitors is predicted to increase the steady-state exposure of the active apalutamide moieties
- No initial dose adjustment is necessary; however, reduce dose based on tolerability
- Mild or moderate CYP2C8 or CYP3A4 inhibitors are not expected to affect apalutamide levels
-
CYP3A4, CYP2C9, CYP2C19, and UGT substrates
- Apalutamide is a strong inducer of CYP3A4 and CYP2C19, a weak inducer of CYP2C9, and it induces UDP-glucuronosyltransferase (UGT)
- Drugs primarily metabolized by CYP3A4, CYP2C19, or CYP2C9 can result in lower exposure to these medications; use alternate medications when possible or evaluate for loss of activity if medication is continued
- Caution if UGT substrates must be coadministered with apalutamide and evaluate for loss of activity
-
P-gp, BCRP, or OATP1B1 substrates
- Apalutamide is a weak inducer of P-gp, BCRP, and OATP1B1 clinically
- Coadministration of apalutamide with these substrates can result in lower exposure of these drugs; caution if these substrates must be coadministered with apalutamide and evaluate for loss of activity
Pregnancy
Pregnancy
The safety and efficacy of the drug have not been established in females. There are no available data on use in pregnant women to inform a drug-associated risk
Based on findings from animals and its mechanism of action, the drug can cause fetal harm and loss of pregnancy when administered to a pregnant female
In an animal reproduction study, oral administration of the drug to pregnant rats during and after organogenesis resulted in fetal abnormalities and embryo-fetal lethality at maternal exposures greater than or equal to 2 times the human clinical exposure (AUC) at the recommended dose
The drug is not indicated for use in females, so animal embryo-fetal developmental toxicology studies were not conducted
Contraception
- Based on the mechanism of action and findings in an animal reproduction study, advise male patients with female partners of reproductive potential to use effective contraception during treatment and for 3 months after the last dose
Infertility
- Based on animal studies, may impair fertility in males of reproductive potential
Lactation
Not indicated for use in females
No data are available on presence in human milk or effect on the breastfed child or on milk production
Pregnancy Categories
A: Generally acceptable. Controlled studies in pregnant women show no evidence of fetal risk.
B: May be acceptable. Either animal studies show no risk but human studies not available or animal studies showed minor risks and human studies done and showed no risk. C: Use with caution if benefits outweigh risks. Animal studies show risk and human studies not available or neither animal nor human studies done. D: Use in LIFE-THREATENING emergencies when no safer drug available. Positive evidence of human fetal risk. X: Do not use in pregnancy. Risks involved outweigh potential benefits. Safer alternatives exist. NA: Information not available.Pharmacology
Mechanism of Action
Androgen receptor (AR) inhibitor that binds directly to the ligand-binding domain of the AR; inhibits AR nuclear translocation, inhibits DNA binding, and impedes AR-mediated transcription
Administration caused decreased tumor cell proliferation and increased apoptosis, leading to decreased tumor volume in mouse xenograft models of prostate cancer
Absorption
Oral bioavailability: 100%
Peak plasma time: 2 hr; delayed by ~2 hr with food
Peak plasma concentration: 6 mcg/mL; 5.9 mcg/mL (active metabolite)
AUC: 100 mcg·h/mL; 124 mcg·h/mL (active metabolite)
Steady-state achieved: 4 weeks
Distribution
Protein bound: 96% (apalutamide); 95% (N-desmethyl apalutamide)
Vd: ~276 L
Metabolism
Metabolism is the main route of elimination
Primarily metabolized by CYP2C8 and CYP3A4 to form active metabolite, N-desmethyl apalutamide
The contribution of CYP2C8 and CYP3A4 in the metabolism of apalutamide is estimated to be 58% and 13% following single dose, but changes to 40% and 37%, respectively, at steady-state
Apalutamide represented 45% and N-desmethyl apalutamide represented 44% of the total AUC following a single oral dose
Elimination
Half-life: 3 days
CL/F: 1.3 L/hr (single dose); 2 L/hr (steady-state)
Excretion: 65% urine; 24% feces
Administration
Oral Administration
May take with or without food
Swallow tablets whole; do not chew, crush, or split
Alternate method of administration for patients who have difficulty swallowing whole tablets
-
240-mg tablet in water with juice, applesauce, or additional water
- Place the whole 240-mg tablet in cup; do not crush or split
- Add ~2 teaspoons (10 mL) of non-carbonated water to make sure that tablet is completely immersed
- Wait 2 minutes until tablet is broken up and spread out, then stir mixture
- Add 2 tablespoons (30 mL) of either orange juice, applesauce, or additional water and stir mixture
- Swallow mixture immediately
- Rinse up with enough water to make sure the whole dose is taken and drink it immediately
- Do not store mixture for later use
-
240-mg tablet through feeding tube (>8 French)
- Place 240-mg tablet in barrel of oral syringe (use at least a 20 mL syringe) and draw up 10 mL of non-carbonated water into syringe
- Wait 10 minutes and then shake vigorously to disperse contents completely
- Administer immediately through feeding tube
- Refill syringe with non-carbonated water and administer; repeat until no tablet residue is left in the syringe or feeding tube
-
60-mg tablet with applesauce
- Mix whole tablets in 4 ounces (120 mL) of applesauce by stirring; do not crush tablets
- Wait 15 min, then stir mixture
- Wait another 15 min, stir mixture until tabs are dispersed (well mixed with no chunks remaining)
- Using spoon, swallow mixture right away
- Rinse container with 2 ounces (60 mL) of water and immediately drink contents; repeat the rinse with 2 ounces (60 mL) of water a second time to ensure whole dose taken
- Consume mixture within 1 hr of preparation medication that is mixed with applesauce
Storage
Store at controlled room temperature (20-25ºC [68-77ºF]); excursions permitted to 15-30ºC (59-86ºF)
Store in the original package
Do not discard desiccant
Protect from light and moisture
Images
Formulary
Adding plans allows you to compare formulary status to other drugs in the same class.
To view formulary information first create a list of plans. Your list will be saved and can be edited at any time.
Adding plans allows you to:
- View the formulary and any restrictions for each plan.
- Manage and view all your plans together – even plans in different states.
- Compare formulary status to other drugs in the same class.
- Access your plan list on any device – mobile or desktop.