Dosing & Uses
Dosage Forms & Strengths
ertugliflozin/metformin
tablet
- 2.5mg/500mg
- 2.5mg/1000mg
- 7.5mg/500mg
- 7.5mg/1000mg
Type 2 Diabetes Mellitus
Indicated as adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus who are not adequately controlled on a regimen containing ertugliflozin or metformin, or in patients who are already treated with both ertugliflozin and metformin
Individualize starting dose based on patient’s current regimen, while not exceeding daily dose of ertugliflozin 15 mg and metformin 2000 mg
Take BID with meals
Switching from individual ertugliflozin and/or metformin
- Patients on metformin: Switch to tablets containing 2.5 mg ertugliflozin, with a similar total daily dose of metformin
- Patients on ertugliflozin: Switch to tablets containing 500 mg metformin, with a similar total daily dose of ertugliflozin
- Patients already on ertugliflozin and metformin: Switch to tablets containing same total daily dose of ertugliflozin and a similar daily dose of metformin
- To reduce GI adverse effects, gradually escalate dose for those initiating metformin
- Adjust dose based on effectiveness and tolerability
Dosage Modifications
Concomitant use with insulin and insulin secretagogues may increase the risk of hypoglycemia; lower dose of insulin or insulin secretagogue may be required to minimize the risk of hypoglycemia when used in combination with ertugliflozin
Iodinated contrast imaging procedures
- Discontinue at the time of, or prior to, an iodinated contrast imaging procedure in patients with an eGFR <60 mL/min/1.73 m², history of liver disease, alcoholism, heart failure, or in patients who will be administered intra-arterial iodinated contrast
- Reevaluate eGFR 48 hr after the imaging procedure; restart drug if renal function is stable
Renal impairment
- eGFR ≥45 mL/min/1.73 m²: No dosage adjustment necessary
- eGFR <45 mL/min/1.73 m²: Not recommended
- Severe (eGFR <30 mL/min/1.73 m2), end-stage renal disease or dialysis: Contraindicated
Hepatic impairment
- Not recommended with hepatic impairment
- Metformin has been associated with some cases of lactic acidosis in patients with hepatic impairment
Dosing Considerations
In patients with volume depletion not previously treated with ertugliflozin, correct this condition before initiating
Assess renal function before initiating and periodically thereafter
Limitations of use
- Not recommended in patients with type 1 diabetes mellitus; may increase risk of diabetic ketoacidosis in these patients
<18 years: Safety and efficacy not established
≥65 years: No dosage adjustment necessary based on age
Elderly patients are more likely to have decreased renal function; because renal function abnormalities can occur after initiating ertugliflozin, and metformin is known to be substantially excreted by the kidneys, care should be taken in dose selection in elderly patients (see Adult Dosing, Dosage Modifications)
Assess renal function in elderly patients prior to initiating dosing and periodically thereafter
Patients aged ≥65 years had a higher incidence of adverse reactions related to volume depletion compared with younger patients
Interactions
Interaction Checker
No Results

Contraindicated
Serious - Use Alternative
Significant - Monitor Closely
Minor

Contraindicated (0)
Serious - Use Alternative (13)
- contrast media (iodinated)
contrast media (iodinated) increases levels of metformin by decreasing renal clearance. Contraindicated. Acute renal failure or lactic acidosis may result. D/c metformin 48 hr before and after imaging study.
- ethanol
ethanol increases toxicity of metformin by Other (see comment). Contraindicated. Comment: Excessive EtOH consumption may alter glycemic control. Some sulfonylureas may produce a disulfiram like rxn; alcohol may potentiate the risk of lactic acidosis.
- ioversol
ioversol increases levels of metformin by decreasing renal clearance. Contraindicated. Acute renal failure or lactic acidosis may result. D/c metformin 48 hr before and after imaging study.
- methylene blue
methylene blue will increase the level or effect of metformin by unspecified interaction mechanism. Avoid or Use Alternate Drug.
- pacritinib
pacritinib will increase the level or effect of metformin by Other (see comment). Avoid or Use Alternate Drug. Concomitant administration of pacritinib (OCT1 inhibitor) with OCT1 substrates may increase the plasma concentrations of these substrates.
- ranolazine
ranolazine will increase the level or effect of metformin by decreasing elimination. Avoid or Use Alternate Drug. Limit metformin dose to 1700 mg/day when used together with ranolazine 1000 mg twice daily; monitor closelly for signs or symptoms of metformin toxicity
- risdiplam
risdiplam will increase the level or effect of metformin by decreasing elimination. Avoid or Use Alternate Drug. Risdiplam inhibits MATE1 and MATE2-K. If unable to avoid coadministration with MATE substrates, consider dosage reduction of MATE substrate.
- selegiline
selegiline will increase the level or effect of metformin by unspecified interaction mechanism. Avoid or Use Alternate Drug.
- selegiline transdermal
selegiline transdermal will increase the level or effect of metformin by unspecified interaction mechanism. Avoid or Use Alternate Drug.
- tafenoquine
tafenoquine will increase the level or effect of metformin by Other (see comment). Avoid or Use Alternate Drug. Tafenoquine inhibits organic cation transporter-2 (OCT2) and multidrug and toxin extrusion (MATE) transporters in vitro. Avoid coadministration with OCT2 or MATE substrates. If coadministration cannot be avoided, monitor for substrate-related toxicities and consider dosage reduction if needed based on product labeling of the coadministered drug.
- tedizolid
tedizolid will increase the level or effect of metformin by unspecified interaction mechanism. Avoid or Use Alternate Drug.
- tranylcypromine
tranylcypromine will increase the level or effect of metformin by unspecified interaction mechanism. Avoid or Use Alternate Drug.
- trilaciclib
trilaciclib will decrease the level or effect of metformin by Other (see comment). Avoid or Use Alternate Drug. Avoid coadministration of trilaciclib (OCT2, MATE1, and MATE-2K inhibitor) with substrates where minimal increased concentration in kidney or blood may lead to serious or life-threatening toxicities.
Monitor Closely (192)
- acetazolamide
acetazolamide increases toxicity of metformin by Other (see comment). Use Caution/Monitor. Comment: Decreases serum bicarbonate and induce non-anion gap, hyperchloremic metabolic acidosis.
- albiglutide
albiglutide, metformin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Concurrent use may increase risk of hypoglycemia; monitor glucose levels.
- amiodarone
amiodarone will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Use Caution/Monitor.
- amlodipine
amlodipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- aripiprazole
aripiprazole, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.
- asenapine
asenapine, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.
- atazanavir
atazanavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .
- benazepril
benazepril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.
- benzphetamine
benzphetamine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- betamethasone
betamethasone decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- bictegravir
bictegravir will increase the level or effect of metformin by decreasing renal clearance. Modify Therapy/Monitor Closely. Bictegravir inhibits organic cation transporter 2 (OCT2) and multidrug and toxin extrusion transporter 1 (MATE1) in vitro. Coadministration with OCT2 and MATE1 substrates may increase their plasma concentrations. Metformin dose reduction may be required.
- bitter melon
bitter melon increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Risk of hypoglycemia.
- brexpiprazole
brexpiprazole decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- bumetanide
bumetanide decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- bupropion
bupropion increases levels of metformin by Other (see comment). Use Caution/Monitor. Comment: Bupropion may inhibit OCT2 mediated renal excretion of metformin.
- captopril
captopril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.
- cariprazine
cariprazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- cephalexin
cephalexin increases toxicity of metformin by decreasing renal clearance. Use Caution/Monitor. particularly in patients who may have other risk factors for metformin toxicity. .
- ceritinib
ceritinib decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- chlorpromazine
chlorpromazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- chlorpropamide
ertugliflozin, chlorpropamide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin.
- cimetidine
cimetidine will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Use Caution/Monitor.
- cinnamon
cinnamon increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Potential for hypoglycemia.
- ciprofloxacin
ciprofloxacin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Hyper and hypoglycemia have been reported in patients treated concomitantly with quinolones and antidiabetic agents. Careful monitoring of blood glucose is recommended.
- citalopram
citalopram increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.
- clevidipine
clevidipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- clozapine
clozapine, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.
- colesevelam
colesevelam increases levels of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- conjugated estrogens
conjugated estrogens decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- corticotropin
corticotropin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- dabrafenib
dabrafenib decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- dalfampridine
metformin, dalfampridine. Either increases levels of the other by Other (see comment). Use Caution/Monitor. Comment: Metformin and dalfampridine are organic cation transporter 2 (OCT2) substrates; both drugs may compete for renal tubular uptake and could potentially increase systemic exposure of either drug when administered concomitantly.
- darunavir
darunavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .
- desogestrel
desogestrel decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- diatrizoate
diatrizoate increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .
- diatrizoate meglumine/diatrizoate sodium
diatrizoate meglumine/diatrizoate sodium increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .
- diazoxide
diazoxide decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- dichlorphenamide
dichlorphenamide, metformin. Either increases toxicity of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Both drugs can cause metabolic acidosis.
- dienogest/estradiol valerate
dienogest/estradiol valerate decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- diethylpropion
diethylpropion decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- digoxin
digoxin, metformin. Either increases levels of the other by basic (cationic) drug competition for renal tubular clearance. Use Caution/Monitor. Measure serum digoxin concentrations before initiating metformin. Monitor patients who take both metformin and digoxin for possible digoxin toxicity and lactic acidosis. Reduce the digoxin and/or metformin dose as necessary.
- diltiazem
diltiazem decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- dofetilide
dofetilide will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Use Caution/Monitor.
- dolutegravir
dolutegravir will increase the level or effect of metformin by decreasing renal clearance. Modify Therapy/Monitor Closely. Dolutegravir inhibits the renal organic cation transporter, OCT2; when used with metformin, limit total daily dose of metformin to 1,000 mg either when starting metformin or dolutegravir; when stopping dolutegravir, adjustment of metformin dose may be necessary; monitor blood glucose when initiating concomitant use and after withdrawal of dolutegravir
- drospirenone
drospirenone decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- dulaglutide
dulaglutide, metformin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.
- enalapril
enalapril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.
- entecavir
entecavir, metformin. Either increases levels of the other by Other (see comment). Use Caution/Monitor. Comment: Coadministration of entecavir with metformin may increase the risk of lactic acidosis.
- erdafitinib
metformin increases levels of erdafitinib by decreasing renal clearance. Modify Therapy/Monitor Closely. Consider alternatives that are not OCT2 substrates or consider reducing the dose of OCT2 substrates based on tolerability.
- escitalopram
escitalopram increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.
- estradiol
estradiol decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- estrogens conjugated synthetic
estrogens conjugated synthetic decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- estropipate
estropipate decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- ethacrynic acid
ethacrynic acid decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- ethinylestradiol
ethinylestradiol decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- ethiodized oil
ethiodized oil increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .
- etonogestrel
etonogestrel decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- everolimus
everolimus decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- exenatide injectable solution
exenatide injectable solution, metformin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Concurrent use may increase risk of hypoglycemia; monitor glucose levels.
- exenatide injectable suspension
exenatide injectable suspension, metformin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Concurrent use may increase risk of hypoglycemia; monitor glucose levels.
- felodipine
felodipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- fleroxacin
fleroxacin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Quinolone antibiotic administration may result in hyper- or hypoglycemia. Gatifloxacin is most likely to produce dysglycemia; moxifloxacin is least likely.
- fluoxetine
fluoxetine increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.
- fluphenazine
fluphenazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- fluvoxamine
fluvoxamine increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.
- fosamprenavir
fosamprenavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .
- fosinopril
fosinopril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.
- fosphenytoin
fosphenytoin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- gemifloxacin
gemifloxacin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Quinolone antibiotic administration may result in hyper- or hypoglycemia. Gatifloxacin is most likely to produce dysglycemia; moxifloxacin is least likely.
- glimepiride
ertugliflozin, glimepiride. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin.
- glipizide
ertugliflozin, glipizide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin.
- glucagon intranasal
glucagon intranasal decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- glyburide
ertugliflozin, glyburide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin.
- glycopyrrolate
glycopyrrolate increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. May require a dose reduction.
- goserelin
goserelin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- histrelin
histrelin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- hydroxyprogesterone caproate (DSC)
hydroxyprogesterone caproate (DSC) decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- ifosfamide
ifosfamide, ertugliflozin. Either increases toxicity of the other by nephrotoxicity and/or ototoxicity. Use Caution/Monitor. Monitor renal function in patients with severe renal impairment, severe intestinal inflammation, or prolonged use >2 gm/day.
- iloperidone
iloperidone, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.
- imidapril
imidapril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.
- indinavir
indinavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .
- insulin aspart
metformin, insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.
ertugliflozin, insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin. - insulin aspart protamine/insulin aspart
metformin, insulin aspart protamine/insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.
ertugliflozin, insulin aspart protamine/insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin. - insulin degludec
metformin, insulin degludec. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.
ertugliflozin, insulin degludec. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin. - insulin degludec/insulin aspart
metformin, insulin degludec/insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.
- insulin detemir
ertugliflozin, insulin detemir. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin.
- insulin detemir
metformin, insulin detemir. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.
- insulin glargine
metformin, insulin glargine. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.
ertugliflozin, insulin glargine. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin. - insulin glulisine
metformin, insulin glulisine. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.
ertugliflozin, insulin glulisine. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin. - insulin inhaled
ertugliflozin, insulin inhaled. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin.
metformin, insulin inhaled. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents. - insulin isophane human/insulin regular human
ertugliflozin, insulin isophane human/insulin regular human. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin.
metformin, insulin isophane human/insulin regular human. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents. - insulin lispro
ertugliflozin, insulin lispro. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin.
metformin, insulin lispro. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents. - insulin lispro protamine/insulin lispro
metformin, insulin lispro protamine/insulin lispro. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.
ertugliflozin, insulin lispro protamine/insulin lispro. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin. - insulin NPH
metformin, insulin NPH. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.
ertugliflozin, insulin NPH. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin. - insulin regular human
metformin, insulin regular human. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.
ertugliflozin, insulin regular human. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin. - iodixanol
iodixanol increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .
- lithium
ertugliflozin decreases levels of lithium by Other (see comment). Use Caution/Monitor. Comment: Concomitant use of an SGLT2 inhibitor with lithium may decrease serum lithium concentrations; monitor serum lithium concentration more frequently during therapy initiation and dosage changes.
- ioflupane I 123
ioflupane I 123 increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .
- iohexol
iohexol increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .
- iopamidol
iopamidol increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .
- iopromide
iopromide increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .
- ioversol
ioversol increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .
- ioxilan
ioxilan increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .
- isocarboxazid
isocarboxazid will increase the level or effect of metformin by unspecified interaction mechanism. Use Caution/Monitor.
- isoniazid
isoniazid decreases effects of metformin by unspecified interaction mechanism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- isradipine
isradipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- ketotifen, ophthalmic
ketotifen, ophthalmic, metformin. Other (see comment). Use Caution/Monitor. Comment: Combination may result in thrombocytopenia (rare). Monitor CBC.
- lanreotide
lanreotide decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- leuprolide
leuprolide decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- levofloxacin
levofloxacin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Quinolone antibiotic administration may result in hyper- or hypoglycemia. Gatifloxacin is most likely to produce dysglycemia; moxifloxacin is least likely.
- levonorgestrel intrauterine
levonorgestrel intrauterine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- levonorgestrel oral
levonorgestrel oral decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- levothyroxine
levothyroxine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- linezolid
linezolid will increase the level or effect of metformin by unspecified interaction mechanism. Use Caution/Monitor.
- liothyronine
liothyronine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- liotrix
liotrix decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- liraglutide
liraglutide, metformin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Concurrent use may increase risk of hypoglycemia; monitor glucose levels.
- lisinopril
lisinopril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.
- lithium
metformin decreases levels of lithium by Other (see comment). Use Caution/Monitor. Comment: SGLT2 inhibitors with lithium may decrease serum lithium concentrations; monitor serum lithium concentration more frequently during therapy initiation and dosage changes.
- lonapegsomatropin
lonapegsomatropin decreases effects of ertugliflozin by Other (see comment). Use Caution/Monitor. Comment: Closely monitor blood glucose when treated with antidiabetic agents. Lonapegsomatropin may decrease insulin sensitivity, particularly at higher doses. Patients with diabetes mellitus may require adjustment of their doses of insulin and/or other antihyperglycemic agents.
lonapegsomatropin decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Closely monitor blood glucose when treated with antidiabetic agents. Lonapegsomatropin may decrease insulin sensitivity, particularly at higher doses. Patients with diabetes mellitus may require adjustment of their doses of insulin and/or other antihyperglycemic agents.
lonapegsomatropin decreases effects of metformin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.
lonapegsomatropin decreases effects of ertugliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone. - lopinavir
lopinavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .
- nateglinide
ertugliflozin, nateglinide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin.
- lurasidone
lurasidone, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.
- marijuana
marijuana decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- mecasermin
mecasermin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Additive hypoglycemic effects.
- medroxyprogesterone
medroxyprogesterone decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- methamphetamine
methamphetamine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- methazolamide
methazolamide increases toxicity of metformin by Other (see comment). Use Caution/Monitor. Comment: Decreases serum bicarbonate and induce non-anion gap, hyperchloremic metabolic acidosis.
- moexipril
moexipril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.
- moxifloxacin
moxifloxacin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Quinolone antibiotic administration may result in hyper- or hypoglycemia. Gatifloxacin is most likely to produce dysglycemia; moxifloxacin is least likely.
- nelfinavir
nelfinavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .
- niacin
niacin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- nicardipine
nicardipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- nifedipine
nifedipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- nilotinib
nilotinib decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- nimodipine
nimodipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- nisoldipine
nisoldipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- nizatidine
nizatidine will increase the level or effect of metformin by decreasing renal clearance. Modify Therapy/Monitor Closely.
- norelgestromin
norelgestromin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- norethindrone
norethindrone decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- norgestimate
norgestimate decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- octreotide
octreotide decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- ofloxacin
ofloxacin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Quinolone antibiotic administration may result in hyper- or hypoglycemia. Gatifloxacin is most likely to produce dysglycemia; moxifloxacin is least likely.
- olanzapine
olanzapine, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.
- omacetaxine
omacetaxine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- ombitasvir/paritaprevir/ritonavir & dasabuvir (DSC)
ombitasvir/paritaprevir/ritonavir & dasabuvir (DSC) increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Monitor for signs of onset of lactic acidosis such as respiratory distress, somnolence, and non-specific abdominal distress or worsening renal function; concomitant metformin use in patients with renal insufficiency or hepatic impairment not recommended.
- ondansetron
ondansetron increases levels of metformin by Other (see comment). Use Caution/Monitor. Comment: Ondansetron inhibition of transporters (MATE or OCTs), which are responsible for active renal secretion of metformin may play a role.
- opuntia ficus indica
opuntia ficus indica increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.
- paliperidone
paliperidone, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.
- paroxetine
paroxetine increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.
- pasireotide
pasireotide decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- patiromer
patiromer will decrease the level or effect of metformin by drug binding in GI tract. Modify Therapy/Monitor Closely. Separate administration by at least 3 hr from patiromer
- pentamidine
pentamidine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- perindopril
perindopril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.
- perphenazine
perphenazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- phendimetrazine
phendimetrazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- phenelzine
phenelzine will increase the level or effect of metformin by unspecified interaction mechanism. Use Caution/Monitor.
- phentermine
phentermine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- phenytoin
phenytoin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- procainamide
metformin will increase the level or effect of procainamide by basic (cationic) drug competition for renal tubular clearance. Use Caution/Monitor.
- procarbazine
procarbazine will increase the level or effect of metformin by unspecified interaction mechanism. Use Caution/Monitor.
- prochlorperazine
prochlorperazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- progesterone intravaginal gel
progesterone intravaginal gel decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- progesterone micronized
progesterone micronized decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- progesterone, natural
progesterone, natural decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- promethazine
promethazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- quetiapine
quetiapine, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.
- quinapril
quinapril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.
- quinidine
quinidine will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Use Caution/Monitor.
- ramipril
ramipril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.
- rasagiline
rasagiline will increase the level or effect of metformin by unspecified interaction mechanism. Use Caution/Monitor.
- repaglinide
ertugliflozin, repaglinide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin.
- risperidone
risperidone, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.
- ritonavir
ritonavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .
- saquinavir
saquinavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .
- sertraline
sertraline increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.
- shark cartilage
shark cartilage increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Theoretical interaction.
- sirolimus
sirolimus decreases levels of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- somapacitan
somapacitan decreases effects of ertugliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.
somapacitan decreases effects of metformin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone. - somatrogon
somatrogon decreases effects of ertugliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.
somatrogon decreases effects of metformin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone. - somatropin
somatropin decreases effects of ertugliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.
somatropin decreases effects of metformin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone. - sulfamethoxypyridazine
sulfamethoxypyridazine increases effects of metformin by unspecified interaction mechanism. Use Caution/Monitor. Risk of hypoglycemia.
- tolazamide
ertugliflozin, tolazamide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin.
- tacrolimus
tacrolimus decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- temsirolimus
temsirolimus decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- tenofovir DF
tenofovir DF increases levels of metformin by decreasing renal clearance. Use Caution/Monitor. Increased risk of lactic acidosis.
- thioridazine
thioridazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- thyroid desiccated
thyroid desiccated decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.
- tibolone
tibolone decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.
- tipranavir
tipranavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .
- tolbutamide
ertugliflozin, tolbutamide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with ertugliflozin.
- topiramate
topiramate increases toxicity of metformin by Other (see comment). Use Caution/Monitor. Comment: Decreases serum bicarbonate and induce non-anion gap, hyperchloremic metabolic acidosis.
Minor (82)
- agrimony
agrimony increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- American ginseng
American ginseng increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- amitriptyline
amitriptyline increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- amoxapine
amoxapine increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- anamu
anamu increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Theoretical interaction.
- bendroflumethiazide
bendroflumethiazide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.
- budesonide
budesonide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.
- chlorothiazide
chlorothiazide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.
- chlorthalidone
chlorthalidone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.
- chromium
chromium increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- clomipramine
clomipramine increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- clonidine
clonidine decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Diminished symptoms of hypoglycemia.
clonidine, metformin. Other (see comment). Minor/Significance Unknown. Comment: Decreased symptoms of hypoglycemia. Mechanism: decreased hypoglycemia induced catecholamine production. - cornsilk
cornsilk increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of hypoglycemia (theoretical interaction).
- cortisone
cortisone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.
- cyanocobalamin
metformin decreases levels of cyanocobalamin by unspecified interaction mechanism. Minor/Significance Unknown. It may take several years of metformin therapy to develop vitamin B12 deficiency.
- cyclopenthiazide
cyclopenthiazide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.
- damiana
damiana decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Theoretical interaction.
- danazol
danazol increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- deflazacort
deflazacort decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.
- desipramine
desipramine increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- devil's claw
devil's claw increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- dexamethasone
dexamethasone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.
- diltiazem
diltiazem will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- doxepin
doxepin increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- elderberry
elderberry increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of hypoglycemia (in vitro research).
- eucalyptus
eucalyptus increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Theoretical interaction.
- famotidine
famotidine increases levels of metformin by decreasing renal clearance. Minor/Significance Unknown.
- fludrocortisone
fludrocortisone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.
- fluoxymesterone
fluoxymesterone increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- fo-ti
fo-ti increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- folic acid
metformin decreases levels of folic acid by unspecified interaction mechanism. Minor/Significance Unknown.
- forskolin
forskolin increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Colenol, a compound found in Coleus root, may stimulate insulin release.
- furosemide
metformin decreases levels of furosemide by unspecified interaction mechanism. Minor/Significance Unknown.
furosemide increases levels of metformin by unspecified interaction mechanism. Minor/Significance Unknown. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia. - gotu kola
gotu kola increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. (Theoretical interaction).
- guanfacine
guanfacine decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Diminished symptoms of hypoglycemia.
guanfacine, metformin. Other (see comment). Minor/Significance Unknown. Comment: Decreased symptoms of hypoglycemia. Mechanism: decreased hypoglycemia induced catecholamine production. - gymnema
gymnema increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- horse chestnut seed
horse chestnut seed increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- hydrochlorothiazide
hydrochlorothiazide will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.
hydrochlorothiazide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose. - hydrocortisone
hydrocortisone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.
- ibuprofen/famotidine
ibuprofen/famotidine increases levels of metformin by decreasing renal clearance. Minor/Significance Unknown.
- imipramine
imipramine increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- indapamide
indapamide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.
- juniper
juniper increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of hypoglycemia (theoretical interaction).
- L-methylfolate
metformin decreases levels of L-methylfolate by unspecified interaction mechanism. Minor/Significance Unknown.
- lofepramine
lofepramine increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- lycopus
lycopus increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of hypoglycemia (theoretical interaction).
- maitake
maitake increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of hypoglycemia (animal research).
- maprotiline
maprotiline increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- memantine
memantine will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- mesterolone
mesterolone increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- methyclothiazide
methyclothiazide will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.
methyclothiazide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose. - methylprednisolone
methylprednisolone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.
- methyltestosterone
methyltestosterone increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- metolazone
metolazone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.
- midodrine
metformin will increase the level or effect of midodrine by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- nettle
nettle increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. (Theoretical interaction).
- nifedipine
nifedipine increases levels of metformin by enhancing GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.
- nortriptyline
nortriptyline increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- ofloxacin
metformin will increase the level or effect of ofloxacin by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.
ofloxacin, metformin. Mechanism: unspecified interaction mechanism. Minor/Significance Unknown. Potential dysglycemia. - oxandrolone
oxandrolone increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- oxymetholone
oxymetholone increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- pegvisomant
pegvisomant increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- potassium acid phosphate
potassium acid phosphate increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Interaction especially seen in the treatment of hypokalemia.
- potassium chloride
potassium chloride increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Interaction especially seen in the treatment of hypokalemia.
- potassium citrate
potassium citrate increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Interaction especially seen in the treatment of hypokalemia.
- prednisolone
prednisolone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.
- prednisone
prednisone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.
- protriptyline
protriptyline increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- quinine
metformin will increase the level or effect of quinine by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- sage
sage increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- stevia
stevia increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- sulfamethoxazole
sulfamethoxazole will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- testosterone
testosterone increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- testosterone buccal system
testosterone buccal system increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- testosterone topical
testosterone topical increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- tongkat ali
tongkat ali increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Risk of hypoglycemia.
- trazodone
trazodone increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- triamterene
metformin will increase the level or effect of triamterene by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- trimethoprim
metformin will increase the level or effect of trimethoprim by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.
- trimipramine
trimipramine increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- vanadium
vanadium increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.
- verapamil
metformin will increase the level or effect of verapamil by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.
Adverse Effects
>10% (Ertugliflozin)
Female genital mycotic infections (9.1-12.2%)
1-10% (Ertugliflozin)
Volume depletion adverse effects (1.9-4.4%)
Male genital mycotic infections (3.7-4.2%)
Urinary tract infections (4-4.1%)
Headache (2.9-3.5%)
Vaginal pruritus (2.4-2.8%)
Increased urination (2.4-2.7%)
Nasopharyngitis (2-2.5%)
Back pain (1.7-2.5%)
Renal adverse effects (1.3-2.5%)
Weight decreased (1.2-2.4%)
Thirst (1.4-2.7%)
>5% (Metformin)
Initiating drug
- Diarrhea
- Nausea
- Vomiting
- Flatulence
- Abdominal discomfort
- Indigestion
- Asthenia
- Headache
Long-term use
- Decreased vitamin B-12 absorption, which may very rarely result in significant deficiency (eg, megaloblastic anemia)
Warnings
Black Box Warnings
Metformin
Lactic acidosis
- Postmarketing cases of metformin-associated lactic acidosis have resulted in death, hypothermia, hypotension, and resistant bradyarrhythmias
- Onset of metformin-associated lactic acidosis is often subtle, accompanied only by nonspecific symptoms (eg, malaise, myalgias, respiratory distress, somnolence, abdominal pain)
- Metformin-associated lactic acidosis is characterized by elevated blood lactate levels (>5 mmol/L), anion gap acidosis (without evidence of ketonuria or ketonemia), an increased lactate/pyruvate ratio, and metformin plasma levels generally >5 mcg/mL
- Risk factors include renal impairment, concomitant use of certain drugs (eg, carbonic anhydrase inhibitors [eg, topiramate]), age ≥65 years, having a radiological study with contrast, surgery and other procedures, hypoxic states (eg, acute CHF), excessive alcohol intake, and hepatic impairment
- If metformin-associated lactic acidosis is suspected, immediately discontinue drug and institute general supportive measures in a hospital setting
- Prompt hemodialysis is recommended
Contraindications
Hypersensitivity to drug or excipients; reactions such as angioedema or anaphylaxis have occurred
Severe renal impairment (eGFR <30 mL/min/1.73 m2), end-stage renal disease, or dialysis
Acute or chronic metabolic acidosis, including diabetic ketoacidosis, with or without coma
Cautions
Cases of metformin-associated lactic acidosis reported, including fatalities (see Black Box Warnings and Contraindications)
Necrotizing fasciitis of the perineum (Fournier gangrene) reported with SGLT2 inhibitors; signs and symptoms include tenderness, redness, or swelling of the genitals or the area from the genitals back to the rectum, and have a fever above 100.4 F or a general feeling of being unwell; if suspected, discontinue SGLT2 inhibitor and start treatment immediately with broad-spectrum antibiotics and surgical debridement if necessary
Before initiating treatment in patients with one or more of risk factors, assess volume status and renal function; causes intravascular volume contraction; symptomatic hypotension may occur after initiating, particularly in patients with renal impairment, with low systolic blood pressure, on diuretics, or who are elderly
Evaluate patients for signs and symptoms of urinary tract infections and treat promptly, if indicated; serious urinary tract infections, including urosepsis and pyelonephritis, requiring hospitalization reported in patients receiving SGLT2 inhibitors
Genital mycotic infections may occur; patients with history of genital mycotic infections and uncircumcised males are more susceptible
Dose-related increases in LDL-C reported
No conclusive evidence of macrovascular risk reduction with empagliflozin or any other antidiabetic agent
Lower limb amputation
- An increased risk for lower limb amputation (primarily of the toe) has been observed in clinical studies with another SGLT2 inhibitor; before initiating, consider factors that may predispose patient to increased risk of amputations (eg, history of prior amputation, peripheral vascular disease, neuropathy, diabetic foot ulcers)
- Counsel patients about importance of routine preventative foot care; monitor patients receiving drug for signs and symptoms of infection (including osteomyelitis), new pain or tenderness, sores or ulcers involving the lower limbs, and discontinue therapy if these complications occur
Vitamin B12 deficiency
- Vitamin B12 levels may decrease; metformin may interfere with absorption from B12-intrinsic factor complex; such decrease, possibly due to interference with B12 absorption from B12-intrinsic factor complex, may be associated with anemia but appears to be rapidly reversible with discontinuation of metformin or vitamin B12 supplementation
- Certain individuals (those with inadequate vitamin B12 or calcium intake or absorption) appear to be predisposed to developing subnormal vitamin B12 levels; measure hematologic parameters on an annual basis and vitamin B12 at 2 to 3 year intervals in patients on metformin and manage any abnormalities
Renal impairment
- Obtain an eGFR at least annually in all patients receiving therapy
- Use not recommended in patients with an eGFR <45 mL/min/1.73 m2; renal impairment may occur owing to intravascular volume contraction; before initiating
- Consider factors that may predispose patients to acute kidney injury, including hypovolemia, chronic renal insufficiency, CHF, and concomitant medications (eg, diuretics, ACE inhibitors, ARBs, NSAIDs)
- Consider temporarily discontinuing ertugliflozin in any setting of reduced oral intake or fluid loss; monitor for signs and symptoms of acute kidney injury, and, if evident, discontinue drug promptly and institute treatment (see Contraindications and Dosage Modifications)
Ketoacidosis
- Not indicated for patients with type 1 diabetes mellitus (T1DM); in placebo-controlled trials, risk of ketoacidosis was increased in patients with T1DM who received SGLT2 inhibitors
- Risk of ketoacidosis may be greater with higher doses
- Before initiating therapy, consider factors in patient history that may predispose to ketoacidosis, including pancreatic insulin deficiency from any cause, caloric restriction, and alcohol abuse
- Consider temporarily discontinuing therapy for at least 4 days for patients who undergo scheduled surgery
- Consider monitoring for ketoacidosis and temporarily discontinuing therapy in other clinical situations known to predispose to ketoacidosis (eg, prolonged fasting due to acute illness or post-surgery); ensure risk factors for ketoacidosis are resolved prior to restarting therapy
- Type 2 diabetes mellitus and pancreatic disorders (eg, history of pancreatitis or pancreatic surgery) are also risk factors for ketoacidosis. There have been postmarketing reports of fatal events of ketoacidosis in patients with type 2 diabetes mellitus using SGLT2 inhibitors.
- Precipitating conditions for diabetic ketoacidosis or other ketoacidosis include under-insulinization due to insulin dose reduction or missed insulin doses, acute febrile illness, reduced caloric intake, ketogenic diet, surgery, volume depletion, and alcohol abuse
- Ketoacidosis and glucosuria may persist longer than typically expected; urinary glucose excretion persists for 3 days after discontinuing therapy; however, there have been postmarketing reports of ketoacidosis and/or glucosuria lasting greater than 6 days and some up to 2 weeks after discontinuation of SGLT2 inhibitors
- Consider ketone monitoring in patients at risk for ketoacidosis if indicated by the clinical situation; assess for ketoacidosis regardless of presenting blood glucose levels in patients who present with signs and symptoms consistent with severe metabolic acidosis; if ketoacidosis is suspected, discontinue therapy, promptly evaluate, and treat ketoacidosis, if confirmed; monitor patients for resolution of ketoacidosis before restarting therapy
- Educate all patients on signs and symptoms of ketoacidosis and instruct patients to discontinue therapy and seek medical attention immediately if signs and symptoms occur
Drug interaction overview
- Closely monitor if coadministered with drugs that affect glycemic control by causing hyperglycemia (eg, thiazides and other diuretics, corticosteroids, phenothiazines, thyroid drugs, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics, CCBs, isoniazid)
-
Ertugliflozin
- Hypoglycemia risk increased with insulin and insulin secretagogues (eg, sulfonylureas); a lower dose of insulin or insulin secretagogue may be required
- Monitoring glycemic control with urine glucose tests is not recommended in patients taking SGLT2 inhibitors, as SGLT2 inhibitors increase urinary glucose excretion and lead to positive urine glucose tests; use alternative methods to monitor glycemic control
- Monitoring glycemic control with 1,5-AG assay is not recommended, as measurements of 1,5-AG are unreliable in assessing glycemic control in patients taking SGLT2 inhibitors; use alternative methods to monitor glycemic control
-
Metformin
- Coadministration with carbonic anhydrase inhibitors (topiramate, zonisamide, acetazolamide, dichlorphenamide) may increase risk for lactic acidosis; these drug cause a decrease in serum bicarbonate and induce non-anion gap hyperchloremic metabolic acidosis
- Drugs that interfere with renal tubular transport (OCT2 inhibitors, MATE inhibitors) may increase systemic exposure to metformin and increase risk for lactic acidosis
- Alcohol is known to increase effect of metformin on lactate metabolism
Pregnancy
Pregnancy
Ertugliflozin
- Based on animal data showing adverse renal effects, not recommended during the second and third trimesters of pregnancy
- Data are limited in pregnant women and are not sufficient to determine a drug-associated risk of adverse developmental outcomes; there are risks to the mother and fetus associated with poorly controlled diabetes in pregnancy
Animal data
- In animal studies, adverse renal changes were observed in rats when ertugliflozin was administered during a period of renal development corresponding to the late second and third trimesters of human pregnancy; doses ~13 times the maximum clinical dose caused renal pelvic and tubule dilatations and renal mineralization that were not fully reversible
- There was no evidence of fetal harm in rats or rabbits at exposures of ertugliflozin ~300 times higher than the maximal clinical dose of 15 mg/day when administered during organogenesis
Metformin
- Published data from postmarketing studies have not reported a clear association with metformin and major birth defects, miscarriage, or adverse maternal or fetal outcomes when metformin was used during pregnancy
- However, these studies cannot definitely establish the absence of any metformin-associated risk because of methodological limitations, including small sample size and inconsistent comparator groups
Animal data
- Metformin did not adversely affect development outcomes when administered to rats and rabbits at doses up to 600 mg/kg/day
- This represents an exposure of about 2 and 6 times the maximum recommended human dose of 2,000 mg based on body surface area comparisons for rats and rabbits, respectively
- Determination of fetal concentrations demonstrated a partial placental barrier to metformin
Lactation
Not recommended while breastfeeding
Ertugliflozin
- Unknown if distributed in human breast milk
- Since human kidney maturation occurs in utero and during the first 2 years of life when lactational exposure may occur, there may be risk to the developing human kidney
- Because of the potential for serious adverse reactions in a breastfed infant, advise women that ertugliflozin is not recommended while breastfeeding
Metformin
- Published clinical lactation studies report that metformin is present in human milk, which resulted in infant doses approximately 0.11-1% of the maternal weight-adjusted dosage and a milk/plasma ratio ranging between 0.13 and 1
- However, the studies were not designed to definitely establish the risk of use of metformin during lactation because of small sample size and limited adverse event data collected in infants
Pregnancy Categories
A: Generally acceptable. Controlled studies in pregnant women show no evidence of fetal risk.
B: May be acceptable. Either animal studies show no risk but human studies not available or animal studies showed minor risks and human studies done and showed no risk. C: Use with caution if benefits outweigh risks. Animal studies show risk and human studies not available or neither animal nor human studies done. D: Use in LIFE-THREATENING emergencies when no safer drug available. Positive evidence of human fetal risk. X: Do not use in pregnancy. Risks involved outweigh potential benefits. Safer alternatives exist. NA: Information not available.Pharmacology
Mechanism of Action
Ertugliflozin: Selective sodium-glucose transporter-2 (SGLT2) inhibitor; lowers the renal glucose threshold (ie, the plasma glucose concentration which exceed the maximum glucose reabsorption capacity of the kidney); lowering the renal glucose threshold results in increased urinary glucose excretion
Metformin: Decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization; improves glucose tolerance by lowering both basal and postprandial plasma glucose
Absorption
Ertugliflozin
- Peak plasma time: 1 hr (fasting); 2 hr (high-fat, high-caloric meal)
- Peak plasma concentration, steady-state: 81.3 ng/mL (5 mg qDay); 268 ng/mL (15 mg qDay)
- AUC, steady-state: 398 ng⋅hr/mL (5 mg qDay); 1,193 ng⋅hr/mL (15 mg qDay)
- Steady-state reached after 4-6 days
- Bioavailability, 15-mg dose: ~100%
Metformin
- Steady-state reached after 24-48 hr
- Bioavailability, 500-mg dose: 50-60%
- Food decreases extent of and slightly delays absorption
Distribution
Ertugliflozin
- Vd, steady-state: 85.5 L
- Protein binding: 93.6%
- Blood-to-plasma concentration ratio of ertugliflozin: 0.66
Metformin
- Vd: 654 L
- Protein binding: Negligible
Metabolism
Ertugliflozin
- Major metabolic pathway for ertugliflozin is UGT1A9 and UGT2B7-mediated O-glucuronidation to 2 glucuronides (pharmacologically inactive at clinically relevant concentrations)
- CYP-mediated (oxidative) metabolism of ertugliflozin is minimal (12%)
Metformin
- Does not undergo hepatic nor biliary metabolism
Excretion
Ertugliflozin
- Half-life: 16.6 hr
- Clearance: 11.2 L/hr
- Excretion, oral [14C]-ertugliflozin solution: Feces (40.9%); urine (50.2%)
- Excretion, unchanged ertugliflozin: Feces (33.8%); urine (1.5%)
Metformin
- Half-life: 17.6 hr (blood); 6.2 hr (plasma)
- Excretion: ~90% urine (unchanged)
Administration
Oral Administration
Take in the morning qDay, with or without food
Missed dose
- Take it as soon as you remember
- If it is almost time for scheduled next dose, skip missed dose and take the next regularly scheduled time
- Do not take 2 doses at the same time
Storage
Store at room temperature between 68-77°F (20-25°C); excursions permitted between 59-86°F (15-30°C)
Keep tablets dry
Store blister packs in the original package
Images
Formulary
Adding plans allows you to compare formulary status to other drugs in the same class.
To view formulary information first create a list of plans. Your list will be saved and can be edited at any time.
Adding plans allows you to:
- View the formulary and any restrictions for each plan.
- Manage and view all your plans together – even plans in different states.
- Compare formulary status to other drugs in the same class.
- Access your plan list on any device – mobile or desktop.