codeine/aspirin/carisoprodol (Rx)

Brand and Other Names:Soma Compound with Codeine

Dosing & Uses

AdultPediatric

Dosage Forms & Strengths

codeine/aspirin/carisoprodol

tablet: Schedule III

  • 16mg/325mg/200mg

Musculoskeletal Pain

1-2 tab/cap PO QID for up to 2-3 weeks

Dosage Forms & Strengths

codeine/aspirin/carisoprodol

tablet: Schedule III

  • 16mg/325mg/200mg

Musculoskeletal Pain

<16 years: Safety & efficacy not established

16 years or older: As adults; 1-2 tab/cap PO QID for up to 2-3 weeks

Next:

Interactions

Interaction Checker

and codeine/aspirin/carisoprodol

No Results

     activity indicator 
    No Interactions Found
    Interactions Found

    Contraindicated

      Serious - Use Alternative

        Significant - Monitor Closely

          Minor

            All Interactions Sort By:
             activity indicator 

            Contraindicated (3)

            • abrocitinib

              abrocitinib and aspirin both increase anticoagulation. Contraindicated. Antiplatelet drugs, except for low-dose aspirin (=81 mg qDay), during the first 3 months of treatment are contraindicated.

            • alvimopan

              alvimopan, codeine. receptor binding competition. Contraindicated. Alvimopan is contraindicated in opioid tolerant patients (ie, those who have taken therapeutic doses of opioids for >7 consecutive days immediately prior to taking alvimopan). Patients recently exposed to opioids are expected to be more sensitive to the effects of alvimopan and therefore may experience abdominal pain, nausea and vomiting, and diarrhea. No significant interaction is expected with concurrent use of opioid analgesics and alvimopan in patients who received opioid analgesics for 7 or fewer consecutive days prior to alvimopan.

            • dichlorphenamide

              dichlorphenamide increases levels of aspirin by unknown mechanism. Contraindicated. Coadministration of dichlorphenamide with high-dose aspirin may increase salicylate levels. Anorexia, tachypnea, lethargy, and coma reported.

            Serious - Use Alternative (77)

            • acrivastine

              acrivastine and codeine both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • amisulpride

              amisulpride and codeine both increase sedation. Avoid or Use Alternate Drug.

            • apalutamide

              apalutamide will decrease the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP2C19 inducer, with drugs that are CYP2C19 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered.

            • asenapine

              asenapine and codeine both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • asenapine transdermal

              asenapine transdermal and codeine both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • avapritinib

              avapritinib and codeine both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • benazepril

              aspirin, benazepril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.

            • benzhydrocodone/acetaminophen

              benzhydrocodone/acetaminophen and codeine both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

              benzhydrocodone/acetaminophen, codeine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

              benzhydrocodone/acetaminophen and carisoprodol both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

              benzhydrocodone/acetaminophen, carisoprodol. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • bremelanotide

              bremelanotide will decrease the level or effect of codeine by Other (see comment). Avoid or Use Alternate Drug. Bremelanotide may slow gastric emptying and potentially reduces the rate and extent of absorption of concomitantly administered oral medications. Avoid use when taking any oral drug that is dependent on threshold concentrations for efficacy. Interactions listed are representative examples and do not include all possible clinical examples.

            • buprenorphine subdermal implant

              buprenorphine subdermal implant and carisoprodol both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • brimonidine

              brimonidine and codeine both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • buprenorphine

              buprenorphine, codeine. Other (see comment). Avoid or Use Alternate Drug. Comment: Mixed opiate agonist/antagonists usually produce additive sedation with narcotics; however, in narcotic addicted pts., the antagonist activity may provoke withdrawal Sx.

            • buprenorphine buccal

              buprenorphine buccal, codeine. Other (see comment). Avoid or Use Alternate Drug. Comment: Mixed opiate agonist/antagonists usually produce additive sedation with narcotics; however, in narcotic addicted pts., the antagonist activity may provoke withdrawal Sx.

            • buprenorphine subdermal implant

              buprenorphine subdermal implant and codeine both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • buprenorphine transdermal

              buprenorphine transdermal and codeine both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

              buprenorphine transdermal and carisoprodol both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • buprenorphine, long-acting injection

              buprenorphine, long-acting injection and codeine both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

              buprenorphine, long-acting injection and carisoprodol both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • butorphanol

              butorphanol, codeine. Other (see comment). Avoid or Use Alternate Drug. Comment: Mixed opiate agonist/antagonists usually produce additive sedation with narcotics; however, in narcotic addicted pts., the antagonist activity may provoke withdrawal Sx.

            • calcium/magnesium/potassium/sodium oxybates

              carisoprodol, calcium/magnesium/potassium/sodium oxybates. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • calcium/magnesium/potassium/sodium oxybates

              codeine, calcium/magnesium/potassium/sodium oxybates. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • caplacizumab

              caplacizumab, aspirin. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug.

            • captopril

              aspirin, captopril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.

            • clonidine

              clonidine, codeine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration enhances CNS depressant effects.

            • dacomitinib

              dacomitinib will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Avoid or Use Alternate Drug. Avoid use with CYP2D6 substrates where minimal increases in concentration of the CYP2D6 substrate may lead to serious or life-threatening toxicities.

            • diazepam intranasal

              diazepam intranasal, codeine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • eluxadoline

              codeine, eluxadoline. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Avoid coadministration with other drugs that cause constipation. Increases risk for constipation related serious adverse reactions. .

            • enalapril

              aspirin, enalapril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.

            • fentanyl

              fentanyl and codeine both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

              fentanyl, codeine. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration with other CNS depressants, such as skeletal muscle relaxants, may cause respiratory depression, hypotension, profound sedation, coma, and/or death. Consider dose reduction of either or both agents to avoid serious adverse effects. Monitor for hypotension, respiratory depression, and profound sedation.

              fentanyl and carisoprodol both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • fentanyl intranasal

              fentanyl intranasal and carisoprodol both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

              fentanyl intranasal, codeine. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration with other CNS depressants, such as skeletal muscle relaxants, may cause respiratory depression, hypotension, profound sedation, coma, and/or death. Consider dose reduction of either or both agents to avoid serious adverse effects. Monitor for hypotension, respiratory depression, and profound sedation.

              fentanyl intranasal and codeine both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • fentanyl iontophoretic transdermal system

              fentanyl iontophoretic transdermal system and carisoprodol both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

              fentanyl iontophoretic transdermal system and codeine both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • fentanyl transdermal

              fentanyl transdermal and carisoprodol both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

              fentanyl transdermal and codeine both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

              fentanyl transdermal, codeine. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration with other CNS depressants, such as skeletal muscle relaxants, may cause respiratory depression, hypotension, profound sedation, coma, and/or death. Consider dose reduction of either or both agents to avoid serious adverse effects. Monitor for hypotension, respiratory depression, and profound sedation.

            • fentanyl transmucosal

              fentanyl transmucosal, codeine. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration with other CNS depressants, such as skeletal muscle relaxants, may cause respiratory depression, hypotension, profound sedation, coma, and/or death. Consider dose reduction of either or both agents to avoid serious adverse effects. Monitor for hypotension, respiratory depression, and profound sedation.

            • fosinopril

              aspirin, fosinopril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.

            • hydrocodone

              hydrocodone, carisoprodol. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • givosiran

              givosiran will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of sensitive CYP2D6 substrates with givosiran. If unavoidable, decrease the CYP2D6 substrate dosage in accordance with approved product labeling.

            • hydrocodone

              hydrocodone, codeine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • ibuprofen

              ibuprofen decreases effects of aspirin by Other (see comment). Avoid or Use Alternate Drug. Comment: Ibuprofen decreases the antiplatelet effects of low-dose aspirin by blocking the active site of platelet cyclooxygenase. Administer ibuprofen 8 h before aspirin or at least 2-4 h after aspirin. The effect of other NSAIDs on aspirin is not established.

              ibuprofen increases toxicity of aspirin by anticoagulation. Avoid or Use Alternate Drug. increases risk of bleeding.

            • ibuprofen IV

              ibuprofen IV increases toxicity of aspirin by anticoagulation. Avoid or Use Alternate Drug. increases risk of bleeding.

              ibuprofen IV decreases effects of aspirin by Other (see comment). Avoid or Use Alternate Drug. Comment: Ibuprofen decreases the antiplatelet effects of low-dose aspirin by blocking the active site of platelet cyclooxygenase. Administer ibuprofen 8 h before aspirin or at least 2-4 h after aspirin. The effect of other NSAIDs on aspirin is not established.

            • isocarboxazid

              isocarboxazid increases toxicity of codeine by unknown mechanism. Avoid or Use Alternate Drug. Risk of hypotension, hyperpyrexia, somnolence, or death; separate by 14 d.

            • ketorolac

              aspirin, ketorolac. Either increases toxicity of the other by pharmacodynamic synergism. Contraindicated.

            • ketorolac intranasal

              aspirin, ketorolac intranasal. Either increases toxicity of the other by pharmacodynamic synergism. Contraindicated.

            • lesinurad

              aspirin decreases effects of lesinurad by unspecified interaction mechanism. Avoid or Use Alternate Drug. Aspirin at doses >325 mg/day may decrease lesinurad efficacy. Aspirin doses 325 mg/day or less (ie, for cardiovascular event prophylaxis) does not decrease lesinurad efficacy and can be coadministered.

            • linezolid

              linezolid increases toxicity of codeine by unknown mechanism. Avoid or Use Alternate Drug. Risk of hypotension, hyperpyrexia, somnolence, or death; separate by 14 d.

            • lisinopril

              aspirin, lisinopril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.

            • lonafarnib

              lonafarnib will increase the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.

            • macimorelin

              aspirin, macimorelin. unspecified interaction mechanism. Avoid or Use Alternate Drug. Drugs that directly affect the pituitary secretion of growth hormone (GH) may impact the accuracy of the macimorelin diagnostic test. Allow sufficient washout time of drugs affecting GH release before administering macimorelin. .

            • measles, mumps, rubella and varicella vaccine, live

              aspirin, measles, mumps, rubella and varicella vaccine, live. Mechanism: unspecified interaction mechanism. Avoid or Use Alternate Drug. Risk of Reye's Syndrome with combination; avoid salicylate use for 6 wks after vaccination.

            • methotrexate

              aspirin increases levels of methotrexate by decreasing renal clearance. Avoid or Use Alternate Drug. Caution should be exercised when salicylates are given in combination with methotrexate. Risk for drug interactions with methotrexate is greatest during high-dose methotrexate therapy, it has been recommended that any of these drugs be used cautiously with methotrexate even when methotrexate is used in low doses.

            • methylene blue

              methylene blue and codeine both increase serotonin levels. Avoid or Use Alternate Drug. If drug combination must be administered, monitor for evidence of serotonergic or opioid-related toxicities

            • metoclopramide intranasal

              codeine, metoclopramide intranasal. Either increases effects of the other by Other (see comment). Avoid or Use Alternate Drug. Comment: Avoid use of metoclopramide intranasal or interacting drug, depending on importance of drug to patient.

              carisoprodol, metoclopramide intranasal. Either increases effects of the other by Other (see comment). Avoid or Use Alternate Drug. Comment: Avoid use of metoclopramide intranasal or interacting drug, depending on importance of drug to patient.

            • mifepristone

              aspirin will decrease the level or effect of mifepristone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.

            • mitotane

              aspirin will decrease the level or effect of mitotane by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.

            • moexipril

              aspirin, moexipril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.

            • nalbuphine

              nalbuphine, codeine. Other (see comment). Avoid or Use Alternate Drug. Comment: Mixed opiate agonist/antagonists usually produce additive sedation with narcotics; however, in narcotic addicted pts., the antagonist activity may provoke withdrawal Sx.

            • olopatadine intranasal

              carisoprodol and olopatadine intranasal both increase sedation. Avoid or Use Alternate Drug. Coadministration increases risk of CNS depression, which can lead to additive impairment of psychomotor performance and cause daytime impairment.

            • olopatadine intranasal

              codeine and olopatadine intranasal both increase sedation. Avoid or Use Alternate Drug. Coadministration increases risk of CNS depression, which can lead to additive impairment of psychomotor performance and cause daytime impairment.

            • ozanimod

              ozanimod and codeine both increase sympathetic (adrenergic) effects, including increased blood pressure and heart rate. Avoid or Use Alternate Drug. Because the active metabolite of ozanimod inhibits MAO-B in vitro, there is a potential for serious adverse reactions, including hypertensive crisis. Therefore, coadministration of ozanimod with drugs that can increase norepinephrine or serotonin is not recommended. Monitor for hypertension with concomitant use.

            • pemetrexed

              aspirin increases levels of pemetrexed by unspecified interaction mechanism. Avoid or Use Alternate Drug. Interrupt dosing in all patients taking NSAIDs with long elimination half-lives for at least 5d before, the day of, and 2d following pemetrexed administration. If coadministration of an NSAID is necessary, closely monitor patients for toxicity, especially myelosuppression, renal toxicity, and GI toxicity.

            • pentazocine

              pentazocine, codeine. Other (see comment). Avoid or Use Alternate Drug. Comment: Mixed opiate agonist/antagonists usually produce additive sedation with narcotics; however, in narcotic addicted pts., the antagonist activity may provoke withdrawal Sx.

            • perindopril

              aspirin, perindopril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.

            • phenelzine

              phenelzine increases toxicity of codeine by unknown mechanism. Avoid or Use Alternate Drug. Risk of hypotension, hyperpyrexia, somnolence, or death; separate by 14 d.

            • prasugrel

              codeine will decrease the level or effect of prasugrel by inhibition of GI absorption. Applies only to oral form of both agents. Avoid or Use Alternate Drug. Co-administration of opioid agonists delay and reduce absorption of prasugrel and its active metabolite presumably by slowing gastric emptying; consider the use of a parenteral anti-platelet agent in acute coronary syndrome patients requiring co-administration of opioid agonists

            • probenecid

              aspirin decreases effects of probenecid by acidic (anionic) drug competition for renal tubular clearance. Avoid or Use Alternate Drug. Aspirin decreases uricosuric action of probenecid.

            • procarbazine

              procarbazine increases toxicity of codeine by unknown mechanism. Avoid or Use Alternate Drug. MAOIs may potentiate CNS depression and hypotension. Do not use within 14 days of MAOI use. .

            • quinapril

              aspirin, quinapril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.

            • ramipril

              aspirin, ramipril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.

            • rasagiline

              rasagiline increases toxicity of codeine by unknown mechanism. Avoid or Use Alternate Drug. Risk of hypotension, hyperpyrexia, somnolence, or death.

            • selegiline transdermal

              selegiline transdermal increases toxicity of codeine by unknown mechanism. Avoid or Use Alternate Drug. Risk of hypotension, hyperpyrexia, somnolence, or death.

            • selinexor

              selinexor, codeine. unspecified interaction mechanism. Avoid or Use Alternate Drug. Patients treated with selinexor may experience neurological toxicities. Avoid taking selinexor with other medications that may cause dizziness or confusion.

              selinexor, carisoprodol. unspecified interaction mechanism. Avoid or Use Alternate Drug. Patients treated with selinexor may experience neurological toxicities. Avoid taking selinexor with other medications that may cause dizziness or confusion.

            • sodium oxybate

              codeine, sodium oxybate. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

              carisoprodol, sodium oxybate. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • sufentanil SL

              sufentanil SL, codeine. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration may result in hypotension, profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

              sufentanil SL, carisoprodol. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration may result in hypotension, profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • ticagrelor

              codeine will decrease the level or effect of ticagrelor by inhibition of GI absorption. Applies only to oral form of both agents. Avoid or Use Alternate Drug. Co-administration of opioid agonists delay and reduce absorption of ticagrelor and its active metabolite presumably by slowing gastric emptying; consider the use of a parenteral anti-platelet agent in acute coronary syndrome patients requiring co-administration of opioid agonists

            • ticlopidine

              aspirin increases effects of ticlopidine by pharmacodynamic synergism. Avoid or Use Alternate Drug. Enhanced risk of hemorrhage.

            • tramadol

              tramadol, codeine. Other (see comment). Avoid or Use Alternate Drug. Comment: Tramadol may reinitiate opiate dependence in pts. previously addicted to other opiates; it may also provoke withdrawal Sx. in pts. who are currently opiate dependent.

            • trandolapril

              aspirin, trandolapril. pharmacodynamic antagonism. Avoid or Use Alternate Drug. Coadministration may result in a significant decrease in renal function. NSAIDs may diminish the antihypertensive effect of ACE inhibitors. The mechanism of these interactions is likely related to the ability of NSAIDs to reduce the synthesis of vasodilating renal prostaglandins.

            • tranylcypromine

              tranylcypromine increases toxicity of codeine by unknown mechanism. Avoid or Use Alternate Drug. Risk of hypotension, hyperpyrexia, somnolence, or death; separate by 14 d.

            • valerian

              valerian and codeine both increase sedation. Avoid or Use Alternate Drug.

            • varicella virus vaccine live

              aspirin, varicella virus vaccine live. Mechanism: unspecified interaction mechanism. Avoid or Use Alternate Drug. Risk of Reye's Syndrome with combination; avoid salicylate use for 6 wks after vaccination.

            Monitor Closely (524)

            • abciximab

              aspirin, abciximab. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • abiraterone

              abiraterone increases levels of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Avoid coadministration of abiraterone with substrates of CYP2D6. If alternative therapy cannot be used, exercise caution and consider a dose reduction of the CYP2D6 substrate.

            • abobotulinumtoxinA

              carisoprodol increases effects of abobotulinumtoxinA by pharmacodynamic synergism. Use Caution/Monitor. Muscle relaxants may enhance botulinum toxin effects. Closely monitor for increased neuromuscular blockade.

            • acalabrutinib

              acalabrutinib increases effects of aspirin by anticoagulation. Modify Therapy/Monitor Closely. Coadministration of acalabrutinib with antiplatelets or anticoagulants may further increase risk of hemorrhage. Monitor for signs of bleeding and consider the benefit-risk of withholding acalabrutinib for 3-7 days presurgery and postsurgery depending upon the type of surgery and the risk of bleeding.

            • acebutolol

              acebutolol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of acebutolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • aceclofenac

              aceclofenac and aspirin both increase anticoagulation. Use Caution/Monitor.

              aceclofenac and aspirin both increase serum potassium. Use Caution/Monitor.

            • acemetacin

              acemetacin and aspirin both increase anticoagulation. Use Caution/Monitor.

              acemetacin and aspirin both increase serum potassium. Use Caution/Monitor.

            • acetazolamide

              acetazolamide, aspirin. Either increases levels of the other by Other (see comment). Use Caution/Monitor. Comment: Carbonic anhydrase inhibitors (CAIs) and salicylates inhibit each other's renal tubular secretion, resulting in increased plasma levels. CAIs also shift salicylates from plasma to the CNS, leading to potential neurotoxicity.

              acetazolamide, aspirin. Mechanism: passive renal tubular reabsorption due to increased pH. Use Caution/Monitor. Salicylate levels increased at moderate doses; risk of CNS toxicity. Salicylate levels decreased at large doses (d/t increased renal excretion of unchanged salicylic acid).

            • acrivastine

              acrivastine and carisoprodol both increase sedation. Use Caution/Monitor.

            • agrimony

              aspirin and agrimony both increase anticoagulation. Use Caution/Monitor.

            • albuterol

              codeine increases and albuterol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              aspirin increases and albuterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • alfalfa

              aspirin and alfalfa both increase anticoagulation. Use Caution/Monitor.

            • alfentanil

              carisoprodol and alfentanil both increase sedation. Use Caution/Monitor.

              alfentanil and codeine both increase sedation. Use Caution/Monitor.

            • alfuzosin

              aspirin decreases effects of alfuzosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.

            • aliskiren

              aspirin will decrease the level or effect of aliskiren by Other (see comment). Use Caution/Monitor. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function, coadministration of NSAIDs with drugs that affect RAAS may increase the risk of renal impairment (including acute renal failure) and cause loss of antihypertensive effect. Monitor renal function periodically.

            • alprazolam

              alprazolam and codeine both increase sedation. Use Caution/Monitor.

              alprazolam and carisoprodol both increase sedation. Use Caution/Monitor.

            • alteplase

              aspirin, alteplase. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • American ginseng

              aspirin and American ginseng both increase anticoagulation. Use Caution/Monitor.

            • amiloride

              amiloride and aspirin both increase serum potassium. Modify Therapy/Monitor Closely.

            • amiodarone

              amiodarone will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • amisulpride

              amisulpride and carisoprodol both increase sedation. Use Caution/Monitor.

            • amitriptyline

              carisoprodol and amitriptyline both increase sedation. Use Caution/Monitor.

              codeine and amitriptyline both increase sedation. Use Caution/Monitor.

            • amobarbital

              amobarbital and codeine both increase sedation. Use Caution/Monitor.

              amobarbital and carisoprodol both increase sedation. Use Caution/Monitor.

            • amoxapine

              codeine and amoxapine both increase sedation. Use Caution/Monitor.

              carisoprodol and amoxapine both increase sedation. Use Caution/Monitor.

            • amoxicillin

              amoxicillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.

              amoxicillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor.

            • ampicillin

              ampicillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.

            • anagrelide

              aspirin, anagrelide. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; increases risk of bleeding; monitor closely.

              anagrelide, aspirin. Either increases toxicity of the other by Mechanism: pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; increases risk of bleeding; monitor closely.

            • antithrombin alfa

              antithrombin alfa and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.

              aspirin, antithrombin alfa. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • antithrombin III

              antithrombin III and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.

              aspirin, antithrombin III. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • apixaban

              aspirin and apixaban both increase anticoagulation. Modify Therapy/Monitor Closely. Both drugs have the potential to cause bleeding. The need for simultaneous use of low-dose aspirin (<100 mg/day) with anticoagulants are common for patients with cardiovascular disease, but may result in increased bleeding; monitor closely. Promptly evaluate any signs or symptoms of blood loss if treated concomitantly with low-dose aspiriin. Avoid coadministration with chronic use of higher dose aspirin. In 1 trial (APPRAISE-2), therapy was terminated because of significantly increased bleeding when apixaban was administered with dual antiplatelet therapy (eg, aspirin plus clopidogrel) compared with single antiplatelet treatment

            • apomorphine

              codeine and apomorphine both increase sedation. Use Caution/Monitor.

              carisoprodol and apomorphine both increase sedation. Use Caution/Monitor.

            • arformoterol

              codeine increases and arformoterol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              aspirin increases and arformoterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • argatroban

              argatroban and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.

              aspirin, argatroban. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • aripiprazole

              codeine and aripiprazole both increase sedation. Use Caution/Monitor.

              carisoprodol and aripiprazole both increase sedation. Use Caution/Monitor.

            • armodafinil

              codeine increases and armodafinil decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • asenapine

              aspirin decreases effects of asenapine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.

            • artemether/lumefantrine

              artemether/lumefantrine will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • asenapine

              asenapine and carisoprodol both increase sedation. Use Caution/Monitor.

            • asenapine transdermal

              asenapine transdermal and carisoprodol both increase sedation. Use Caution/Monitor.

            • atenolol

              atenolol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of atenolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • avapritinib

              avapritinib and carisoprodol both increase sedation. Use Caution/Monitor.

            • azelastine

              azelastine and carisoprodol both increase sedation. Use Caution/Monitor.

              azelastine and codeine both increase sedation. Use Caution/Monitor.

            • azficel-T

              azficel-T, aspirin. Other (see comment). Use Caution/Monitor. Comment: Patients taking aspirin may experience increased bruising or bleeding at biopsy and/or injection sites. Concomitant use of aspirin is not recommended. .

            • azilsartan

              aspirin, azilsartan. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals.

              aspirin decreases effects of azilsartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.

            • baclofen

              baclofen and carisoprodol both increase sedation. Use Caution/Monitor.

              baclofen and codeine both increase sedation. Use Caution/Monitor.

            • belladonna and opium

              codeine and belladonna and opium both increase sedation. Use Caution/Monitor.

              carisoprodol and belladonna and opium both increase sedation. Use Caution/Monitor.

            • bemiparin

              bemiparin and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.

            • benazepril

              benazepril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.

            • bendroflumethiazide

              aspirin increases and bendroflumethiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • benperidol

              codeine and benperidol both increase sedation. Use Caution/Monitor.

              carisoprodol and benperidol both increase sedation. Use Caution/Monitor.

            • benzphetamine

              codeine increases and benzphetamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              carisoprodol increases and benzphetamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • betaxolol

              betaxolol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of betaxolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • betrixaban

              aspirin, betrixaban. Either increases levels of the other by anticoagulation. Use Caution/Monitor.

            • bimatoprost

              bimatoprost, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).

            • bisoprolol

              bisoprolol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of bisoprolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • bivalirudin

              bivalirudin and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.

              aspirin, bivalirudin. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • brexanolone

              brexanolone, carisoprodol. Either increases toxicity of the other by sedation. Use Caution/Monitor.

              brexanolone, codeine. Either increases toxicity of the other by sedation. Use Caution/Monitor.

            • brexpiprazole

              brexpiprazole and carisoprodol both increase sedation. Use Caution/Monitor.

              brexpiprazole and codeine both increase sedation. Use Caution/Monitor.

            • brimonidine

              brimonidine and carisoprodol both increase sedation. Use Caution/Monitor.

            • brinzolamide

              brinzolamide, aspirin. Either increases levels of the other by Other (see comment). Use Caution/Monitor. Comment: Carbonic anhydrase inhibitors (CAIs) and salicylates inhibit each other's renal tubular secretion, resulting in increased plasma levels. CAIs also shift salicylates from plasma to the CNS, leading to potential neurotoxicity.

            • brivaracetam

              brivaracetam and codeine both increase sedation. Use Caution/Monitor.

            • brivaracetam

              brivaracetam and carisoprodol both increase sedation. Use Caution/Monitor.

            • brompheniramine

              brompheniramine and carisoprodol both increase sedation. Use Caution/Monitor.

              brompheniramine and codeine both increase sedation. Use Caution/Monitor.

            • bumetanide

              aspirin increases and bumetanide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              aspirin decreases effects of bumetanide by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.

            • buprenorphine

              buprenorphine and codeine both increase sedation. Use Caution/Monitor.

              carisoprodol and buprenorphine both increase sedation. Use Caution/Monitor.

            • buprenorphine buccal

              carisoprodol and buprenorphine buccal both increase sedation. Use Caution/Monitor.

              buprenorphine buccal and codeine both increase sedation. Use Caution/Monitor.

            • buprenorphine, long-acting injection

              buprenorphine, long-acting injection increases effects of carisoprodol by Other (see comment). Modify Therapy/Monitor Closely. Comment: Buprenorphine may enhance the neuromuscular blocking action of skeletal muscle relaxants and increase risk for respiratory depression. Monitor for signs of respiratory depression that may be greater than otherwise expected and decrease muscle relaxant dosage as necessary.

              codeine increases toxicity of buprenorphine, long-acting injection by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of buprenorphine and benzodiazepines or other CNS depressants increases risk of adverse reactions including overdose, respiratory depression, and death. Cessation of benzodiazepines or other CNS depressants is preferred in most cases. In some cases, monitoring at a higher level of care for tapering CNS depressants may be appropriate. In others, gradually tapering a patient off of a prescribed benzodiazepine or other CNS depressant or decreasing to the lowest effective dose may be appropriate.

            • bupropion

              bupropion will decrease the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents the conversion of codeine to its active metabolite morphine.

            • butabarbital

              butabarbital and carisoprodol both increase sedation. Use Caution/Monitor.

            • butabarbital

              butabarbital and codeine both increase sedation. Use Caution/Monitor.

            • butalbital

              butalbital and codeine both increase sedation. Use Caution/Monitor.

              butalbital and carisoprodol both increase sedation. Use Caution/Monitor.

            • butorphanol

              butorphanol and codeine both increase sedation. Use Caution/Monitor.

              carisoprodol and butorphanol both increase sedation. Use Caution/Monitor.

            • caffeine

              codeine increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • candesartan

              candesartan and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of candesartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.

              candesartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals.

            • cannabidiol

              cannabidiol will increase the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Modify Therapy/Monitor Closely. Consider reducing the dose of sensitive CYP2C19 substrates, as clinically appropriate, when coadministered with cannabidiol.

            • captopril

              captopril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, elderly or volume depleted individuals.

            • carbenoxolone

              aspirin increases and carbenoxolone decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • carbinoxamine

              carbinoxamine and codeine both increase sedation. Use Caution/Monitor.

              carbinoxamine and carisoprodol both increase sedation. Use Caution/Monitor.

            • carisoprodol

              carisoprodol and codeine both increase sedation. Use Caution/Monitor.

            • carvedilol

              carvedilol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of carvedilol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • celecoxib

              aspirin and celecoxib both increase anticoagulation. Use Caution/Monitor.

              aspirin and celecoxib both increase serum potassium. Use Caution/Monitor.

            • celiprolol

              celiprolol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of celiprolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • cenobamate

              cenobamate will increase the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Modify Therapy/Monitor Closely. Consider a dose reduction of CYP2C19 substrates, as clinically appropriate, when used concomitantly with cenobamate.

              cenobamate, carisoprodol. Either increases effects of the other by sedation. Use Caution/Monitor.

            • celecoxib

              celecoxib decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • cenobamate

              cenobamate, codeine. Either increases effects of the other by sedation. Use Caution/Monitor.

            • chloral hydrate

              chloral hydrate and codeine both increase sedation. Use Caution/Monitor.

              chloral hydrate and carisoprodol both increase sedation. Use Caution/Monitor.

            • chlordiazepoxide

              chlordiazepoxide and codeine both increase sedation. Use Caution/Monitor.

              chlordiazepoxide and carisoprodol both increase sedation. Use Caution/Monitor.

            • chloroquine

              chloroquine will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • chlorothiazide

              aspirin increases and chlorothiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • chlorpheniramine

              chlorpheniramine and carisoprodol both increase sedation. Use Caution/Monitor.

            • chlorpheniramine

              chlorpheniramine and codeine both increase sedation. Use Caution/Monitor.

            • chlorpromazine

              chlorpromazine will decrease the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine

              codeine and chlorpromazine both increase sedation. Use Caution/Monitor.

              carisoprodol and chlorpromazine both increase sedation. Use Caution/Monitor.

            • chlorpropamide

              aspirin increases effects of chlorpropamide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.

            • chlorthalidone

              aspirin increases and chlorthalidone decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • chlorzoxazone

              chlorzoxazone and codeine both increase sedation. Use Caution/Monitor.

            • choline magnesium trisalicylate

              aspirin and choline magnesium trisalicylate both increase anticoagulation. Use Caution/Monitor.

              aspirin and choline magnesium trisalicylate both increase serum potassium. Use Caution/Monitor.

            • cilostazol

              aspirin, cilostazol. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • cinnamon

              aspirin and cinnamon both increase anticoagulation. Use Caution/Monitor.

            • cinnarizine

              cinnarizine and carisoprodol both increase sedation. Use Caution/Monitor.

            • cimetidine

              cimetidine will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • cinacalcet

              cinacalcet decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • cinnarizine

              cinnarizine and codeine both increase sedation. Use Caution/Monitor.

            • ciprofloxacin

              aspirin decreases levels of ciprofloxacin by Other (see comment). Use Caution/Monitor. Comment: Buffered aspirin may decrease absorption of quinolones. Consider administering 2 hr before or 6 hr after, buffered aspirin administration.

            • citalopram

              citalopram, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. If possible, avoid concurrent use.

            • clemastine

              clemastine and carisoprodol both increase sedation. Use Caution/Monitor.

              clemastine and codeine both increase sedation. Use Caution/Monitor.

            • clobazam

              carisoprodol, clobazam. Other (see comment). Use Caution/Monitor. Comment: Concomitant administration can increase the potential for CNS effects (e.g., increased sedation or respiratory depression).

              codeine, clobazam. Other (see comment). Use Caution/Monitor. Comment: Concomitant administration can increase the potential for CNS effects (e.g., increased sedation or respiratory depression).

              clobazam decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • clomipramine

              clomipramine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. Clomipramine inhib. serotonin uptake by platelets.

              codeine and clomipramine both increase sedation. Use Caution/Monitor.

              clomipramine decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

              carisoprodol and clomipramine both increase sedation. Use Caution/Monitor.

            • clonazepam

              clonazepam and carisoprodol both increase sedation. Use Caution/Monitor.

              clonazepam and codeine both increase sedation. Use Caution/Monitor.

            • clopidogrel

              aspirin, clopidogrel. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • clorazepate

              clorazepate and codeine both increase sedation. Use Caution/Monitor.

              clorazepate and carisoprodol both increase sedation. Use Caution/Monitor.

            • clozapine

              codeine and clozapine both increase sedation. Use Caution/Monitor.

              carisoprodol and clozapine both increase sedation. Use Caution/Monitor.

              clozapine decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • cocaine topical

              cocaine topical decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • codeine

              carisoprodol and codeine both increase sedation. Use Caution/Monitor.

            • collagenase clostridium histolyticum

              aspirin increases toxicity of collagenase clostridium histolyticum by anticoagulation. Use Caution/Monitor. Collagenase clostridium histolyticum has high incidence of ecchymosis/contusion at injection site; avoid concomitant anticoagulants (except for low-dose aspirin, ie, up to 150 mg/day).

            • cordyceps

              aspirin and cordyceps both increase anticoagulation. Use Caution/Monitor.

            • cortisone

              aspirin, cortisone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.

            • cyclizine

              cyclizine and carisoprodol both increase sedation. Use Caution/Monitor.

              cyclizine and codeine both increase sedation. Use Caution/Monitor.

            • cyclobenzaprine

              cyclobenzaprine and codeine both increase sedation. Use Caution/Monitor.

              carisoprodol and cyclobenzaprine both increase sedation. Use Caution/Monitor.

            • cyclopenthiazide

              aspirin increases and cyclopenthiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • cyproheptadine

              cyproheptadine and codeine both increase sedation. Use Caution/Monitor.

              cyproheptadine and carisoprodol both increase sedation. Use Caution/Monitor.

            • dabigatran

              dabigatran and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely. Both drugs have the potential to cause bleeding. The need for simultaneous use of low-dose aspirin (<100 mg/day) with anticoagulants are common for patients with cardiovascular disease, but may result in increased bleeding; monitor closely. Promptly evaluate any signs or symptoms of blood loss if treated concomitantly with low-dose aspirin. Avoid coadministration with chronic use of higher dose aspirin

            • dalteparin

              dalteparin and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.

              aspirin, dalteparin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • dantrolene

              dantrolene and codeine both increase sedation. Use Caution/Monitor.

              carisoprodol and dantrolene both increase sedation. Use Caution/Monitor.

            • daridorexant

              codeine and daridorexant both increase sedation. Modify Therapy/Monitor Closely. Coadministration increases risk of CNS depression, which can lead to additive impairment of psychomotor performance and cause daytime impairment.

              carisoprodol and daridorexant both increase sedation. Modify Therapy/Monitor Closely. Coadministration increases risk of CNS depression, which can lead to additive impairment of psychomotor performance and cause daytime impairment.

            • darifenacin

              darifenacin decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • deferasirox

              deferasirox, aspirin. Other (see comment). Use Caution/Monitor. Comment: Combination may increase GI bleeding, ulceration and irritation. Use with caution.

            • defibrotide

              defibrotide increases effects of aspirin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Defibrotide may enhance effects of platelet inhibitors.

            • deflazacort

              aspirin, deflazacort. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.

            • desipramine

              carisoprodol and desipramine both increase sedation. Use Caution/Monitor.

            • desflurane

              desflurane and codeine both increase sedation. Use Caution/Monitor. Opioids may decrease MAC requirements, less inhalation anesthetic may be required.

            • desipramine

              codeine and desipramine both increase sedation. Use Caution/Monitor.

              desipramine decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • desirudin

              aspirin, desirudin. Either increases levels of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • desvenlafaxine

              desvenlafaxine will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Desvenlafaxine inhibits CYP2D6; with higher desvenlafaxine doses (ie, 400 mg) decrease the CYP2D6 substrate dose by up to 50%; no dosage adjustment needed with desvenlafaxine doses <100 mg

            • deutetrabenazine

              codeine and deutetrabenazine both increase sedation. Use Caution/Monitor.

            • dexamethasone

              aspirin, dexamethasone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.

            • dexchlorpheniramine

              dexchlorpheniramine and carisoprodol both increase sedation. Use Caution/Monitor.

              dexchlorpheniramine and codeine both increase sedation. Use Caution/Monitor.

            • dexfenfluramine

              codeine increases and dexfenfluramine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              carisoprodol increases and dexfenfluramine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • dexmedetomidine

              dexmedetomidine and carisoprodol both increase sedation. Use Caution/Monitor.

              dexmedetomidine and codeine both increase sedation. Use Caution/Monitor.

            • dexmethylphenidate

              codeine increases and dexmethylphenidate decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • dextromoramide

              carisoprodol and dextromoramide both increase sedation. Use Caution/Monitor.

            • dextroamphetamine

              codeine increases and dextroamphetamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • dextromoramide

              codeine and dextromoramide both increase sedation. Use Caution/Monitor.

            • diamorphine

              carisoprodol and diamorphine both increase sedation. Use Caution/Monitor.

              codeine and diamorphine both increase sedation. Use Caution/Monitor.

            • diazepam

              diazepam and carisoprodol both increase sedation. Use Caution/Monitor.

              diazepam and codeine both increase sedation. Use Caution/Monitor.

            • diazepam intranasal

              diazepam intranasal, carisoprodol. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration may potentiate the CNS-depressant effects of each drug.

            • diclofenac

              aspirin and diclofenac both increase anticoagulation. Use Caution/Monitor.

              aspirin and diclofenac both increase serum potassium. Use Caution/Monitor.

            • dicloxacillin

              dicloxacillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.

            • diethylpropion

              codeine increases and diethylpropion decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • difelikefalin

              difelikefalin and codeine both increase sedation. Use Caution/Monitor.

              difelikefalin and carisoprodol both increase sedation. Use Caution/Monitor.

            • difenoxin hcl

              carisoprodol and difenoxin hcl both increase sedation. Use Caution/Monitor.

              codeine and difenoxin hcl both increase sedation. Use Caution/Monitor.

            • diflunisal

              aspirin and diflunisal both increase anticoagulation. Use Caution/Monitor.

              aspirin and diflunisal both increase serum potassium. Use Caution/Monitor.

            • digoxin

              aspirin and digoxin both increase serum potassium. Use Caution/Monitor.

            • dimenhydrinate

              dimenhydrinate and carisoprodol both increase sedation. Use Caution/Monitor.

              dimenhydrinate and codeine both increase sedation. Use Caution/Monitor.

            • diphenhydramine

              diphenhydramine decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

              diphenhydramine and codeine both increase sedation. Use Caution/Monitor.

              diphenhydramine and carisoprodol both increase sedation. Use Caution/Monitor.

            • diphenoxylate hcl

              codeine and diphenoxylate hcl both increase sedation. Use Caution/Monitor.

              carisoprodol and diphenoxylate hcl both increase sedation. Use Caution/Monitor.

            • dipipanone

              codeine and dipipanone both increase sedation. Use Caution/Monitor.

              carisoprodol and dipipanone both increase sedation. Use Caution/Monitor.

            • dipyridamole

              aspirin, dipyridamole. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • dobutamine

              codeine increases and dobutamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              aspirin increases and dobutamine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • dong quai

              aspirin and dong quai both increase anticoagulation. Use Caution/Monitor.

            • dopamine

              codeine increases and dopamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • dopexamine

              carisoprodol increases and dopexamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              codeine increases and dopexamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • dopexamine

              aspirin increases and dopexamine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • dosulepin

              codeine and dosulepin both increase sedation. Use Caution/Monitor.

              carisoprodol and dosulepin both increase sedation. Use Caution/Monitor.

            • doxazosin

              aspirin decreases effects of doxazosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.

            • doxepin

              codeine and doxepin both increase sedation. Use Caution/Monitor.

              carisoprodol and doxepin both increase sedation. Use Caution/Monitor.

            • doxylamine

              doxylamine and codeine both increase sedation. Use Caution/Monitor.

              doxylamine and carisoprodol both increase sedation. Use Caution/Monitor.

            • dronedarone

              dronedarone decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • droperidol

              carisoprodol and droperidol both increase sedation. Use Caution/Monitor.

            • droperidol

              codeine and droperidol both increase sedation. Use Caution/Monitor.

            • drospirenone

              drospirenone and aspirin both increase serum potassium. Modify Therapy/Monitor Closely.

            • duloxetine

              duloxetine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.

              duloxetine decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • edoxaban

              edoxaban, aspirin. Either increases toxicity of the other by anticoagulation. Modify Therapy/Monitor Closely. Both drugs have the potential to cause bleeding. The need for simultaneous use of low-dose aspirin (<100 mg/day) with anticoagulants are common for patients with cardiovascular disease, but may result in increased bleeding; monitor closely. Promptly evaluate any signs or symptoms of blood loss if treated concomitantly with low-dose aspirin. Avoid coadministration with chronic use of higher dose aspirin.

            • elagolix

              elagolix will increase the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Modify Therapy/Monitor Closely. Elagolix is a weak CYP2C19 inhibitor. Caution with sensitive CYP2C19 substrates.

            • elvitegravir/cobicistat/emtricitabine/tenofovir DF

              elvitegravir/cobicistat/emtricitabine/tenofovir DF, aspirin. Either increases toxicity of the other by decreasing renal clearance. Modify Therapy/Monitor Closely. Toxicity may result from coadministration of emtricitabine and tenofovir with other drugs that are also primarily excreted by glomerular filtration and/or active tubular secretion including high-dose or multiple-dose NSAIDs; alternatives to NSAIDs should be considered.

              elvitegravir/cobicistat/emtricitabine/tenofovir DF increases levels of codeine by affecting hepatic enzyme CYP2D6 metabolism. Modify Therapy/Monitor Closely. Cobicistat is a CYP2D6 inhibitor; caution with CYP2D6 substrates for which elevated plasma concentrations are associated with serious and/or life-threatening events.

            • enalapril

              enalapril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.

            • ephedrine

              codeine increases and ephedrine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • enoxaparin

              enoxaparin and aspirin both increase anticoagulation. Use Caution/Monitor. Additive effects are intended when both drugs are prescribed as indicated for unstable angina, non-Q-wave MI, and STEMI

              aspirin, enoxaparin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • ephedrine

              aspirin increases and ephedrine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • epinephrine

              aspirin increases and epinephrine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              codeine increases and epinephrine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • epinephrine racemic

              codeine increases and epinephrine racemic decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              aspirin increases and epinephrine racemic decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • epoprostenol

              aspirin and epoprostenol both increase anticoagulation. Use Caution/Monitor.

            • esketamine intranasal

              esketamine intranasal, codeine. Either increases toxicity of the other by sedation. Modify Therapy/Monitor Closely.

              esketamine intranasal, carisoprodol. Either increases toxicity of the other by sedation. Modify Therapy/Monitor Closely.

            • eprosartan

              eprosartan and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of eprosartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.

              eprosartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals.

            • eptifibatide

              aspirin, eptifibatide. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • escitalopram

              escitalopram, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.

            • eslicarbazepine acetate

              eslicarbazepine acetate will increase the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Use Caution/Monitor.

            • esmolol

              esmolol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of esmolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • estazolam

              estazolam and codeine both increase sedation. Use Caution/Monitor.

            • estazolam

              estazolam and carisoprodol both increase sedation. Use Caution/Monitor.

            • ethacrynic acid

              aspirin increases and ethacrynic acid decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • ethanol

              carisoprodol and ethanol both increase sedation. Use Caution/Monitor.

              codeine and ethanol both increase sedation. Use Caution/Monitor.

            • etodolac

              aspirin and etodolac both increase anticoagulation. Use Caution/Monitor.

              aspirin and etodolac both increase serum potassium. Use Caution/Monitor.

            • etomidate

              etomidate and codeine both increase sedation. Use Caution/Monitor.

              etomidate and carisoprodol both increase sedation. Use Caution/Monitor.

            • fedratinib

              fedratinib will increase the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Use Caution/Monitor. Adjust dose of drugs that are CYP2C19 substrates as necessary.

              fedratinib will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Adjust dose of drugs that are CYP2D6 substrates as necessary.

            • fenbufen

              aspirin and fenbufen both increase anticoagulation. Use Caution/Monitor.

              aspirin and fenbufen both increase serum potassium. Use Caution/Monitor.

            • fenfluramine

              carisoprodol increases and fenfluramine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              codeine increases and fenfluramine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • fennel

              aspirin and fennel both increase anticoagulation. Use Caution/Monitor.

            • fenoprofen

              aspirin and fenoprofen both increase anticoagulation. Use Caution/Monitor.

              aspirin and fenoprofen both increase serum potassium. Use Caution/Monitor.

            • feverfew

              aspirin and feverfew both increase anticoagulation. Use Caution/Monitor.

            • fexinidazole

              fexinidazole will increase the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Use Caution/Monitor.

            • fish oil

              fish oil, aspirin. Other (see comment). Use Caution/Monitor. Comment: Patients taking fish oil and an anticoagulant or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding. .

            • fish oil triglycerides

              fish oil triglycerides will increase the level or effect of aspirin by anticoagulation. Use Caution/Monitor. Prolonged bleeding reported in patients taking antiplatelet agents or anticoagulants and oral omega-3 fatty acids. Periodically monitor bleeding time in patients receiving fish oil triglycerides and concomitant antiplatelet agents or anticoagulants.

            • flibanserin

              codeine and flibanserin both increase sedation. Modify Therapy/Monitor Closely. Risk for sedation increased if flibanserin is coadministration with other CNS depressants.

            • fludrocortisone

              aspirin, fludrocortisone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.

            • fluoxetine

              fluoxetine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.

              fluoxetine will decrease the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine

            • fluphenazine

              carisoprodol and fluphenazine both increase sedation. Use Caution/Monitor.

              codeine and fluphenazine both increase sedation. Use Caution/Monitor.

            • flurbiprofen

              aspirin and flurbiprofen both increase anticoagulation. Use Caution/Monitor.

              aspirin and flurbiprofen both increase serum potassium. Use Caution/Monitor.

            • flurazepam

              flurazepam and codeine both increase sedation. Use Caution/Monitor.

              flurazepam and carisoprodol both increase sedation. Use Caution/Monitor.

            • fluvoxamine

              fluvoxamine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding SSRIs inhib. serotonin uptake by platelets.

            • fondaparinux

              fondaparinux and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.

            • formoterol

              codeine increases and formoterol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              aspirin increases and formoterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • forskolin

              aspirin and forskolin both increase anticoagulation. Use Caution/Monitor.

            • gabapentin

              gabapentin, codeine. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of CNS depressants can result in serious, life-threatening, and fatal respiratory depression. Use lowest dose possible and monitor for respiratory depression and sedation.

            • gabapentin enacarbil

              gabapentin enacarbil, codeine. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of CNS depressants can result in serious, life-threatening, and fatal respiratory depression. Use lowest dose possible and monitor for respiratory depression and sedation.

            • ganaxolone

              codeine and ganaxolone both increase sedation. Use Caution/Monitor.

              carisoprodol and ganaxolone both increase sedation. Use Caution/Monitor.

            • fosinopril

              fosinopril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.

            • haloperidol

              codeine and haloperidol both increase sedation. Use Caution/Monitor.

              carisoprodol and haloperidol both increase sedation. Use Caution/Monitor.

              haloperidol decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • furosemide

              aspirin increases and furosemide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • garlic

              aspirin and garlic both increase anticoagulation. Use Caution/Monitor.

            • gentamicin

              aspirin increases and gentamicin decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • ginger

              aspirin and ginger both increase anticoagulation. Use Caution/Monitor.

            • ginkgo biloba

              aspirin and ginkgo biloba both increase anticoagulation. Use Caution/Monitor.

            • glimepiride

              aspirin increases effects of glimepiride by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.

            • glipizide

              aspirin increases effects of glipizide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.

            • glyburide

              aspirin increases effects of glyburide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.

            • green tea

              green tea increases effects of aspirin by pharmacodynamic synergism. Use Caution/Monitor. (Theoretical, due to caffeine content). Combination may increase risk of bleeding.

            • griseofulvin

              griseofulvin decreases levels of aspirin by unknown mechanism. Use Caution/Monitor.

            • heparin

              heparin and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.

              aspirin, heparin. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • horse chestnut seed

              aspirin and horse chestnut seed both increase anticoagulation. Use Caution/Monitor.

            • hyaluronidase

              aspirin decreases effects of hyaluronidase by Other (see comment). Use Caution/Monitor. Comment: Salicylates, when given in large systemic doses, may render tissues partially resistant to the action of hyaluronidase. Patients may require larger amounts of hyaluronidase for equivalent dispersing effect.

            • hydralazine

              aspirin decreases effects of hydralazine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.

            • hydrochlorothiazide

              aspirin increases and hydrochlorothiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • hydrocortisone

              aspirin, hydrocortisone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.

            • hydromorphone

              carisoprodol and hydromorphone both increase sedation. Use Caution/Monitor.

              codeine and hydromorphone both increase sedation. Use Caution/Monitor.

            • hydroxyzine

              hydroxyzine and codeine both increase sedation. Use Caution/Monitor.

              hydroxyzine and carisoprodol both increase sedation. Use Caution/Monitor.

            • ibrutinib

              ibrutinib will increase the level or effect of aspirin by anticoagulation. Use Caution/Monitor. Ibrutinib may increase the risk of hemorrhage in patients receiving antiplatelet or anticoagulant therapies and monitor for signs of bleeding.

            • ibuprofen

              aspirin and ibuprofen both increase anticoagulation. Use Caution/Monitor.

              aspirin and ibuprofen both increase serum potassium. Use Caution/Monitor.

            • ibuprofen IV

              aspirin will increase the level or effect of ibuprofen IV by acidic (anionic) drug competition for renal tubular clearance. Modify Therapy/Monitor Closely.

              aspirin and ibuprofen IV both increase anticoagulation. Modify Therapy/Monitor Closely.

              aspirin and ibuprofen IV both increase serum potassium. Use Caution/Monitor.

            • icosapent

              icosapent, aspirin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Icosapent may prolong bleeding time. Periodically monitor if coadministered with other drugs that affect bleeding.

            • iloperidone

              codeine and iloperidone both increase sedation. Use Caution/Monitor.

              carisoprodol and iloperidone both increase sedation. Use Caution/Monitor.

            • imatinib

              imatinib, aspirin. Either increases toxicity of the other by Other (see comment). Modify Therapy/Monitor Closely. Comment: Imatinib may cause thrombocytopenia; bleeding risk increased when imatinib is coadministered with anticoagulants, NSAIDs, platelet inhibitors, and thrombolytic agents.

            • imipramine

              codeine and imipramine both increase sedation. Use Caution/Monitor.

              carisoprodol and imipramine both increase sedation. Use Caution/Monitor.

              imipramine decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • incobotulinumtoxinA

              carisoprodol, incobotulinumtoxinA. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Muscle relaxants may enhance botulinum toxin effects. Closely monitor for increased neuromuscular blockade.

            • indapamide

              aspirin increases and indapamide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • indomethacin

              aspirin and indomethacin both increase anticoagulation. Use Caution/Monitor.

              aspirin and indomethacin both increase serum potassium. Use Caution/Monitor.

            • insulin aspart

              aspirin increases effects of insulin aspart by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.

            • insulin aspart protamine/insulin aspart

              aspirin increases effects of insulin aspart protamine/insulin aspart by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.

            • insulin degludec

              aspirin increases effects of insulin degludec by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.

            • insulin degludec/insulin aspart

              aspirin, insulin degludec/insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Both drugs decrease blood glucose.

            • insulin detemir

              aspirin increases effects of insulin detemir by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.

            • insulin glargine

              aspirin increases effects of insulin glargine by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.

            • insulin glulisine

              aspirin increases effects of insulin glulisine by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.

            • insulin inhaled

              aspirin increases effects of insulin inhaled by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.

            • insulin isophane human/insulin regular human

              aspirin increases effects of insulin isophane human/insulin regular human by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.

            • insulin lispro

              aspirin increases effects of insulin lispro by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.

            • insulin lispro protamine/insulin lispro

              aspirin increases effects of insulin lispro protamine/insulin lispro by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.

            • insulin NPH

              aspirin increases effects of insulin NPH by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.

            • insulin regular human

              aspirin increases effects of insulin regular human by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of insulin with high doses of salicylates (3 g/day or more) may increase risk for hypoglycemia. Insulin dose adjustment and increased frequency of glucose monitoring may be required.

            • irbesartan

              irbesartan and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of irbesartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.

              irbesartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals.

            • isoniazid

              isoniazid decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • isoproterenol

              codeine increases and isoproterenol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              aspirin increases and isoproterenol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • ketamine

              ketamine and codeine both increase sedation. Use Caution/Monitor.

              ketamine and carisoprodol both increase sedation. Use Caution/Monitor.

            • ketoprofen

              aspirin and ketoprofen both increase anticoagulation. Use Caution/Monitor.

              aspirin and ketoprofen both increase serum potassium. Use Caution/Monitor.

            • ketoconazole

              ketoconazole decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • ketorolac

              aspirin and ketorolac both increase anticoagulation. Use Caution/Monitor.

              aspirin and ketorolac both increase serum potassium. Use Caution/Monitor.

            • ketorolac intranasal

              aspirin and ketorolac intranasal both increase anticoagulation. Use Caution/Monitor.

              aspirin and ketorolac intranasal both increase serum potassium. Use Caution/Monitor.

            • ketotifen, ophthalmic

              carisoprodol and ketotifen, ophthalmic both increase sedation. Use Caution/Monitor.

            • ketotifen, ophthalmic

              codeine and ketotifen, ophthalmic both increase sedation. Use Caution/Monitor.

            • labetalol

              labetalol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of labetalol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • lasmiditan

              lasmiditan, codeine. Either increases effects of the other by sedation. Use Caution/Monitor. Coadministration of lasmiditan and other CNS depressant drugs, including alcohol have not been evaluated in clinical studies. Lasmiditan may cause sedation, as well as other cognitive and/or neuropsychiatric adverse reactions.

              lasmiditan, carisoprodol. Either increases effects of the other by sedation. Use Caution/Monitor. Coadministration of lasmiditan and other CNS depressant drugs, including alcohol have not been evaluated in clinical studies. Lasmiditan may cause sedation, as well as other cognitive and/or neuropsychiatric adverse reactions.

            • latanoprost

              latanoprost, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).

            • latanoprostene bunod ophthalmic

              latanoprostene bunod ophthalmic, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).

            • lemborexant

              lemborexant, codeine. Either increases effects of the other by sedation. Modify Therapy/Monitor Closely. Dosage adjustment may be necessary if lemborexant is coadministered with other CNS depressants because of potentially additive effects.

              lemborexant, carisoprodol. Either increases effects of the other by sedation. Modify Therapy/Monitor Closely. Dosage adjustment may be necessary if lemborexant is coadministered with other CNS depressants because of potentially additive effects.

            • letermovir

              letermovir increases levels of codeine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • levalbuterol

              aspirin increases and levalbuterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • levomilnacipran

              levomilnacipran, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. SNRIs may further impair platelet activity in patients taking antiplatelet or anticoagulant drugs.

            • levorphanol

              carisoprodol and levorphanol both increase sedation. Use Caution/Monitor.

            • levalbuterol

              codeine increases and levalbuterol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • levoketoconazole

              levoketoconazole decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • levorphanol

              codeine and levorphanol both increase sedation. Use Caution/Monitor.

            • lisdexamfetamine

              codeine increases and lisdexamfetamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • lisinopril

              lisinopril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.

            • lithium

              aspirin increases levels of lithium by decreasing renal clearance. Use Caution/Monitor.

            • lofepramine

              carisoprodol and lofepramine both increase sedation. Use Caution/Monitor.

              codeine and lofepramine both increase sedation. Use Caution/Monitor.

            • lofexidine

              codeine and lofexidine both increase sedation. Use Caution/Monitor.

              carisoprodol and lofexidine both increase sedation. Use Caution/Monitor.

            • lopinavir

              lopinavir decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • loprazolam

              loprazolam and carisoprodol both increase sedation. Use Caution/Monitor.

            • loprazolam

              loprazolam and codeine both increase sedation. Use Caution/Monitor.

            • lorazepam

              lorazepam and carisoprodol both increase sedation. Use Caution/Monitor.

              lorazepam and codeine both increase sedation. Use Caution/Monitor.

            • lorcaserin

              lorcaserin will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • lormetazepam

              lormetazepam and carisoprodol both increase sedation. Use Caution/Monitor.

            • lormetazepam

              lormetazepam and codeine both increase sedation. Use Caution/Monitor.

            • lornoxicam

              aspirin and lornoxicam both increase anticoagulation. Use Caution/Monitor.

              aspirin and lornoxicam both increase serum potassium. Use Caution/Monitor.

            • losartan

              losartan and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of losartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.

              losartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals.

            • loxapine

              codeine and loxapine both increase sedation. Use Caution/Monitor.

              carisoprodol and loxapine both increase sedation. Use Caution/Monitor.

            • loxapine inhaled

              codeine and loxapine inhaled both increase sedation. Use Caution/Monitor.

              carisoprodol and loxapine inhaled both increase sedation. Use Caution/Monitor.

            • lumacaftor/ivacaftor

              lumacaftor/ivacaftor, carisoprodol. affecting hepatic enzyme CYP2C19 metabolism. Use Caution/Monitor. In vitro studies suggest that lumacaftor may induce and ivacaftor may inhibit CYP2C19 substrates. .

            • lumefantrine

              lumefantrine will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • lurasidone

              lurasidone, carisoprodol. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: Potential for increased CNS depressant effects when used concurrently; monitor for increased adverse effects and toxicity.

              lurasidone, codeine. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: Potential for increased CNS depressant effects when used concurrently; monitor for increased adverse effects and toxicity.

            • maprotiline

              carisoprodol and maprotiline both increase sedation. Use Caution/Monitor.

              codeine and maprotiline both increase sedation. Use Caution/Monitor.

            • marijuana

              carisoprodol and marijuana both increase sedation. Use Caution/Monitor.

              codeine and marijuana both increase sedation. Use Caution/Monitor.

            • meclofenamate

              aspirin and meclofenamate both increase anticoagulation. Use Caution/Monitor.

              aspirin and meclofenamate both increase serum potassium. Use Caution/Monitor.

            • mefenamic acid

              aspirin and mefenamic acid both increase anticoagulation. Use Caution/Monitor.

              aspirin and mefenamic acid both increase serum potassium. Use Caution/Monitor.

            • melatonin

              melatonin increases effects of aspirin by anticoagulation. Use Caution/Monitor. Melatonin may decrease prothrombin time.

              carisoprodol and melatonin both increase sedation. Use Caution/Monitor.

              codeine and melatonin both increase sedation. Use Caution/Monitor.

            • meloxicam

              aspirin and meloxicam both increase anticoagulation. Use Caution/Monitor.

              aspirin and meloxicam both increase serum potassium. Use Caution/Monitor.

            • meperidine

              codeine and meperidine both increase sedation. Use Caution/Monitor.

              carisoprodol and meperidine both increase sedation. Use Caution/Monitor.

            • meprobamate

              codeine and meprobamate both increase sedation. Use Caution/Monitor.

              carisoprodol and meprobamate both increase sedation. Use Caution/Monitor.

            • mesalamine

              mesalamine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Additive nephrotoxicity.

            • metaproterenol

              aspirin increases and metaproterenol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              codeine increases and metaproterenol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • metaxalone

              carisoprodol and metaxalone both increase sedation. Use Caution/Monitor.

            • methazolamide

              methazolamide, aspirin. Either increases levels of the other by Other (see comment). Use Caution/Monitor. Comment: Carbonic anhydrase inhibitors (CAIs) and salicylates inhibit each other's renal tubular secretion, resulting in increased plasma levels. CAIs also shift salicylates from plasma to the CNS, leading to potential neurotoxicity.

            • metaxalone

              metaxalone and codeine both increase sedation. Use Caution/Monitor.

            • methadone

              codeine and methadone both increase sedation. Use Caution/Monitor.

              carisoprodol and methadone both increase sedation. Use Caution/Monitor.

            • methamphetamine

              codeine increases and methamphetamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • methocarbamol

              carisoprodol and methocarbamol both increase sedation. Use Caution/Monitor.

            • methocarbamol

              methocarbamol and codeine both increase sedation. Use Caution/Monitor.

            • methyclothiazide

              aspirin increases and methyclothiazide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor. .

            • methylenedioxymethamphetamine

              codeine increases and methylenedioxymethamphetamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              carisoprodol increases and methylenedioxymethamphetamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • methylprednisolone

              aspirin, methylprednisolone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.

            • metolazone

              aspirin increases and metolazone decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • metoprolol

              metoprolol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of metoprolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • midazolam

              midazolam and carisoprodol both increase sedation. Use Caution/Monitor.

              midazolam and codeine both increase sedation. Use Caution/Monitor.

            • midazolam intranasal

              midazolam intranasal, codeine. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Concomitant use of barbiturates, alcohol, or other CNS depressants may increase the risk of hypoventilation, airway obstruction, desaturation, or apnea and may contribute to profound and/or prolonged drug effect.

              midazolam intranasal, carisoprodol. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Concomitant use of barbiturates, alcohol, or other CNS depressants may increase the risk of hypoventilation, airway obstruction, desaturation, or apnea and may contribute to profound and/or prolonged drug effect.

            • midodrine

              codeine increases and midodrine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • milnacipran

              milnacipran, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.

            • mirtazapine

              carisoprodol and mirtazapine both increase sedation. Use Caution/Monitor.

            • mirabegron

              mirabegron will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • mirtazapine

              codeine and mirtazapine both increase sedation. Use Caution/Monitor.

            • mistletoe

              aspirin increases and mistletoe decreases anticoagulation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • modafinil

              codeine increases and modafinil decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • moexipril

              moexipril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly or volume depleted individuals.

            • morphine

              codeine and morphine both increase sedation. Use Caution/Monitor.

              carisoprodol and morphine both increase sedation. Use Caution/Monitor.

            • motherwort

              codeine and motherwort both increase sedation. Use Caution/Monitor.

              carisoprodol and motherwort both increase sedation. Use Caution/Monitor.

            • moxisylyte

              aspirin decreases effects of moxisylyte by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.

            • moxonidine

              codeine and moxonidine both increase sedation. Use Caution/Monitor.

              carisoprodol and moxonidine both increase sedation. Use Caution/Monitor.

            • mycophenolate

              aspirin will increase the level or effect of mycophenolate by acidic (anionic) drug competition for renal tubular clearance. Use Caution/Monitor.

            • nabilone

              codeine and nabilone both increase sedation. Use Caution/Monitor.

              carisoprodol and nabilone both increase sedation. Use Caution/Monitor.

            • nabumetone

              aspirin and nabumetone both increase anticoagulation. Use Caution/Monitor.

              aspirin and nabumetone both increase serum potassium. Use Caution/Monitor.

            • nadolol

              nadolol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of nadolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • nafcillin

              nafcillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.

              nafcillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor.

            • nalbuphine

              codeine and nalbuphine both increase sedation. Use Caution/Monitor.

              carisoprodol and nalbuphine both increase sedation. Use Caution/Monitor.

            • naproxen

              aspirin and naproxen both increase anticoagulation. Use Caution/Monitor.

              aspirin and naproxen both increase serum potassium. Use Caution/Monitor.

            • nebivolol

              nebivolol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of nebivolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • nefazodone

              nefazodone, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.

            • nettle

              aspirin increases and nettle decreases anticoagulation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • nitazoxanide

              nitazoxanide, aspirin. Either increases levels of the other by Mechanism: plasma protein binding competition. Use Caution/Monitor.

            • nitroglycerin rectal

              aspirin will increase the level or effect of nitroglycerin rectal by Other (see comment). Use Caution/Monitor. The pharmacological effects of nitroglycerin may be enhanced by concomitant administration of aspirin.

            • nitroglycerin sublingual

              aspirin increases effects of nitroglycerin sublingual by additive vasodilation. Use Caution/Monitor. Vasodilatory and hemodynamic effects of NTG may be enhanced by coadministration with aspirin (additive effect desirable for emergent treatment).

            • norepinephrine

              aspirin increases and norepinephrine decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              codeine increases and norepinephrine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • nortriptyline

              carisoprodol and nortriptyline both increase sedation. Use Caution/Monitor.

            • olmesartan

              olmesartan and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of olmesartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.

              olmesartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals.

            • nortriptyline

              codeine and nortriptyline both increase sedation. Use Caution/Monitor.

            • olanzapine

              codeine and olanzapine both increase sedation. Use Caution/Monitor.

              carisoprodol and olanzapine both increase sedation. Use Caution/Monitor.

            • oliceridine

              oliceridine, carisoprodol. Either increases toxicity of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

              carisoprodol increases toxicity of oliceridine by Other (see comment). Modify Therapy/Monitor Closely. Comment: Anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Monitor for signs of urinary retention or reduced gastric motility if oliceridine is coadministered with anticholinergics.

              oliceridine, codeine. Either increases toxicity of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • ombitasvir/paritaprevir/ritonavir & dasabuvir (DSC)

              ombitasvir/paritaprevir/ritonavir & dasabuvir (DSC) decreases effects of carisoprodol by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Increase dose if clinically indicated.

            • omega 3 carboxylic acids

              omega 3 carboxylic acids, aspirin. Other (see comment). Use Caution/Monitor. Comment: Patients taking omega-3 acids and an anticoagulant or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding.

            • omega 3 fatty acids

              omega 3 fatty acids, aspirin. Other (see comment). Use Caution/Monitor. Comment: Patients taking omega-3-fatty acids and an anticoagulant or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding. .

            • opium tincture

              codeine and opium tincture both increase sedation. Use Caution/Monitor.

            • opium tincture

              carisoprodol and opium tincture both increase sedation. Use Caution/Monitor.

            • orphenadrine

              carisoprodol and orphenadrine both increase sedation. Use Caution/Monitor.

              orphenadrine and codeine both increase sedation. Use Caution/Monitor.

            • ospemifene

              aspirin, ospemifene. Either increases levels of the other by plasma protein binding competition. Modify Therapy/Monitor Closely.

            • oxacillin

              oxacillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.

              oxacillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor.

            • oxaprozin

              aspirin and oxaprozin both increase anticoagulation. Use Caution/Monitor.

              aspirin and oxaprozin both increase serum potassium. Use Caution/Monitor.

            • oxazepam

              oxazepam and codeine both increase sedation. Use Caution/Monitor.

              oxazepam and carisoprodol both increase sedation. Use Caution/Monitor.

            • oxycodone

              carisoprodol and oxycodone both increase sedation. Use Caution/Monitor.

              codeine and oxycodone both increase sedation. Use Caution/Monitor.

            • oxymorphone

              codeine and oxymorphone both increase sedation. Use Caution/Monitor.

              carisoprodol and oxymorphone both increase sedation. Use Caution/Monitor.

            • paliperidone

              carisoprodol and paliperidone both increase sedation. Use Caution/Monitor.

              codeine and paliperidone both increase sedation. Use Caution/Monitor.

            • panax ginseng

              aspirin and panax ginseng both increase anticoagulation. Use Caution/Monitor.

            • papaveretum

              codeine and papaveretum both increase sedation. Use Caution/Monitor.

              carisoprodol and papaveretum both increase sedation. Use Caution/Monitor.

            • papaverine

              carisoprodol and papaverine both increase sedation. Use Caution/Monitor.

              codeine and papaverine both increase sedation. Use Caution/Monitor.

            • parecoxib

              aspirin and parecoxib both increase anticoagulation. Use Caution/Monitor.

              aspirin and parecoxib both increase serum potassium. Use Caution/Monitor.

            • paroxetine

              paroxetine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.

              paroxetine will decrease the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • pau d'arco

              aspirin and pau d'arco both increase anticoagulation. Use Caution/Monitor.

            • peginterferon alfa 2b

              peginterferon alfa 2b, codeine. Other (see comment). Use Caution/Monitor. Comment: When patients are administered peginterferon alpha-2b with CYP2D6 substrates, the therapeutic effect of these drugs may be altered. Peginterferon alpha-2b may increase or decrease levels of CYP2D6 substrate.

            • pegvisomant

              codeine decreases effects of pegvisomant by unknown mechanism. Use Caution/Monitor.

            • pentazocine

              codeine and pentazocine both increase sedation. Use Caution/Monitor.

              carisoprodol and pentazocine both increase sedation. Use Caution/Monitor.

            • pegaspargase

              pegaspargase increases effects of aspirin by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of bleeding events.

            • pentobarbital

              pentobarbital and carisoprodol both increase sedation. Use Caution/Monitor.

              pentobarbital and codeine both increase sedation. Use Caution/Monitor.

            • penbutolol

              penbutolol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of penbutolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • penicillin G aqueous

              penicillin G aqueous, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.

              penicillin G aqueous, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor.

            • perampanel

              perampanel and codeine both increase sedation. Use Caution/Monitor.

            • perindopril

              perindopril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high doses of aspirin,in elderly or volume depleted individuals.

            • perphenazine

              carisoprodol and perphenazine both increase sedation. Use Caution/Monitor.

            • perphenazine

              codeine and perphenazine both increase sedation. Use Caution/Monitor.

            • phendimetrazine

              codeine increases and phendimetrazine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • phenindione

              phenindione and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.

            • phenobarbital

              phenobarbital and codeine both increase sedation. Use Caution/Monitor.

              phenobarbital and carisoprodol both increase sedation. Use Caution/Monitor.

            • phenoxybenzamine

              aspirin decreases effects of phenoxybenzamine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.

            • phentermine

              codeine increases and phentermine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • phentolamine

              aspirin decreases effects of phentolamine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.

            • phenylephrine PO

              carisoprodol increases and phenylephrine PO decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor. .

            • phenylephrine

              codeine increases and phenylephrine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • phenylephrine PO

              codeine increases and phenylephrine PO decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor. .

            • pholcodine

              carisoprodol and pholcodine both increase sedation. Use Caution/Monitor.

              codeine and pholcodine both increase sedation. Use Caution/Monitor.

            • phytoestrogens

              aspirin and phytoestrogens both increase anticoagulation. Use Caution/Monitor.

            • pimozide

              codeine and pimozide both increase sedation. Use Caution/Monitor.

              carisoprodol and pimozide both increase sedation. Use Caution/Monitor.

            • pindolol

              pindolol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of pindolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • pirbuterol

              aspirin increases and pirbuterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              codeine increases and pirbuterol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • piroxicam

              aspirin and piroxicam both increase anticoagulation. Use Caution/Monitor.

              aspirin and piroxicam both increase serum potassium. Use Caution/Monitor.

            • prabotulinumtoxinA

              carisoprodol increases effects of prabotulinumtoxinA by pharmacodynamic synergism. Use Caution/Monitor. Muscle relaxants may enhance botulinum toxin effects. Closely monitor for increased neuromuscular blockade.

            • pivmecillinam

              pivmecillinam, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.

              pivmecillinam, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor.

            • potassium acid phosphate

              aspirin and potassium acid phosphate both increase serum potassium. Modify Therapy/Monitor Closely.

            • potassium chloride

              aspirin and potassium chloride both increase serum potassium. Modify Therapy/Monitor Closely.

            • potassium citrate

              aspirin and potassium citrate both increase serum potassium. Use Caution/Monitor.

            • potassium iodide

              potassium iodide and aspirin both increase serum potassium. Use Caution/Monitor.

            • prasugrel

              aspirin, prasugrel. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • prazosin

              aspirin decreases effects of prazosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.

            • prednisolone

              aspirin, prednisolone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.

            • prednisone

              aspirin, prednisone. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of GI ulceration.

            • pregabalin

              pregabalin, codeine. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of CNS depressants can result in serious, life-threatening, and fatal respiratory depression. Use lowest dose possible and monitor for respiratory depression and sedation.

            • primidone

              primidone and carisoprodol both increase sedation. Use Caution/Monitor.

              primidone and codeine both increase sedation. Use Caution/Monitor.

            • prochlorperazine

              codeine and prochlorperazine both increase sedation. Use Caution/Monitor.

              carisoprodol and prochlorperazine both increase sedation. Use Caution/Monitor.

            • promethazine

              promethazine and carisoprodol both increase sedation. Use Caution/Monitor.

              promethazine and codeine both increase sedation. Use Caution/Monitor.

            • propofol

              propofol and carisoprodol both increase sedation. Use Caution/Monitor.

              propofol and codeine both increase sedation. Use Caution/Monitor.

            • propranolol

              propranolol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of propranolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • propylhexedrine

              codeine increases and propylhexedrine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              carisoprodol increases and propylhexedrine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • protamine

              protamine and aspirin both increase anticoagulation. Modify Therapy/Monitor Closely.

            • protriptyline

              codeine and protriptyline both increase sedation. Use Caution/Monitor.

              carisoprodol and protriptyline both increase sedation. Use Caution/Monitor.

            • quazepam

              quazepam and codeine both increase sedation. Use Caution/Monitor.

              quazepam and carisoprodol both increase sedation. Use Caution/Monitor.

            • quetiapine

              codeine and quetiapine both increase sedation. Use Caution/Monitor.

              carisoprodol and quetiapine both increase sedation. Use Caution/Monitor.

            • quinapril

              quinapril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high doses of aspirin, in elderly or volume depleted individuals.

            • quinidine

              quinidine will decrease the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • ramelteon

              carisoprodol and ramelteon both increase sedation. Use Caution/Monitor.

            • ramelteon

              codeine and ramelteon both increase sedation. Use Caution/Monitor.

            • ramipril

              ramipril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high doses of aspirin, in elderly or volume depleted individuals.

            • reishi

              aspirin and reishi both increase anticoagulation. Use Caution/Monitor.

            • remimazolam

              remimazolam, codeine. Either increases toxicity of the other by sedation. Modify Therapy/Monitor Closely. Coadministration may result in profound sedation, respiratory depression, coma, and/or death. Continuously monitor vital signs during sedation and recovery period if coadministered. Carefully titrate remimazolam dose if administered with opioid analgesics and/or sedative/hypnotics.

              remimazolam, carisoprodol. Either increases toxicity of the other by sedation. Modify Therapy/Monitor Closely. Coadministration may result in profound sedation, respiratory depression, coma, and/or death. Continuously monitor vital signs during sedation and recovery period if coadministered. Carefully titrate remimazolam dose if administered with opioid analgesics and/or sedative/hypnotics.

            • reteplase

              aspirin, reteplase. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • ribociclib

              ribociclib will increase the level or effect of codeine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • risperidone

              carisoprodol and risperidone both increase sedation. Use Caution/Monitor.

            • risperidone

              codeine and risperidone both increase sedation. Use Caution/Monitor.

            • ritonavir

              ritonavir will decrease the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • rivaroxaban

              aspirin, rivaroxaban. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. Both drugs have the potential to cause bleeding. The need for simultaneous use of low-dose aspirin (<100 mg/day) with anticoagulants are common for patients with cardiovascular disease, but may result in increased bleeding; monitor closely. Promptly evaluate any signs or symptoms of blood loss if treated concomitantly with low-dose aspirin. Avoid coadministration with chronic use of higher dose aspirin.

            • rivastigmine

              rivastigmine increases toxicity of aspirin by pharmacodynamic synergism. Use Caution/Monitor. Monitor patients for symptoms of active or occult gastrointestinal bleeding.

            • rolapitant

              rolapitant will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Rolapitant may increase plasma concentrations of CYP2D6 substrates for at least 28 days following rolapitant administration.

            • rucaparib

              rucaparib will increase the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Modify Therapy/Monitor Closely. Adjust dosage of CYP2C19 substrates, if clinically indicated.

            • sacubitril/valsartan

              sacubitril/valsartan and aspirin both increase serum potassium. Use Caution/Monitor.

              sacubitril/valsartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals.

              aspirin decreases effects of sacubitril/valsartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.

            • salicylates (non-asa)

              aspirin and salicylates (non-asa) both increase anticoagulation. Use Caution/Monitor.

              aspirin and salicylates (non-asa) both increase serum potassium. Use Caution/Monitor.

            • salmeterol

              codeine increases and salmeterol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

              aspirin increases and salmeterol decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • salsalate

              aspirin and salsalate both increase anticoagulation. Use Caution/Monitor.

              aspirin and salsalate both increase serum potassium. Use Caution/Monitor.

            • scullcap

              codeine and scullcap both increase sedation. Use Caution/Monitor.

              carisoprodol and scullcap both increase sedation. Use Caution/Monitor.

            • saw palmetto

              saw palmetto increases toxicity of aspirin by unspecified interaction mechanism. Use Caution/Monitor. May increase risk of bleeding.

            • secobarbital

              secobarbital and codeine both increase sedation. Use Caution/Monitor.

              secobarbital and carisoprodol both increase sedation. Use Caution/Monitor.

            • selegiline

              selegiline increases toxicity of codeine by unknown mechanism. Modify Therapy/Monitor Closely. Potential for increased CNS depression, drowsiness, dizziness or hypotension, so use with any MAOI should be cautious.

            • selumetinib

              aspirin and selumetinib both increase anticoagulation. Modify Therapy/Monitor Closely. An increased risk of bleeding may occur in patients taking a vitamin-K antagonist or an antiplatelet agent with selumetinib. Monitor for bleeding and INR or PT in patients coadministered a vitamin-K antagonist or an antiplatelet agent with selumetinib.

            • sertraline

              sertraline, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.

            • Siberian ginseng

              aspirin and Siberian ginseng both increase anticoagulation. Use Caution/Monitor.

            • shepherd's purse

              carisoprodol and shepherd's purse both increase sedation. Use Caution/Monitor.

            • sertraline

              sertraline decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • sevoflurane

              sevoflurane and codeine both increase sedation. Use Caution/Monitor.

            • shepherd's purse

              codeine and shepherd's purse both increase sedation. Use Caution/Monitor.

            • silodosin

              aspirin decreases effects of silodosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.

            • sodium picosulfate/magnesium oxide/anhydrous citric acid

              aspirin, sodium picosulfate/magnesium oxide/anhydrous citric acid. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May be associated with fluid and electrolyte imbalances.

            • sodium sulfate/?magnesium sulfate/potassium chloride

              sodium sulfate/?magnesium sulfate/potassium chloride increases toxicity of aspirin by Other (see comment). Use Caution/Monitor. Comment: Coadministration with medications that cause fluid and electrolyte abnormalities may increase the risk of adverse events of seizure, arrhythmias, and renal impairment.

            • sodium sulfate/potassium sulfate/magnesium sulfate

              sodium sulfate/potassium sulfate/magnesium sulfate increases toxicity of aspirin by Other (see comment). Use Caution/Monitor. Comment: Coadministration with medications that cause fluid and electrolyte abnormalities may increase the risk of adverse events of seizure, arrhythmias, and renal impairment.

            • sotalol

              sotalol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of sotalol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • sparsentan

              sparsentan will decrease the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Use Caution/Monitor. Sparsentan (a CYP2C19 inducer) decreases exposure of CYP2C19 substrates and reduces efficacy related to these substrates.

              aspirin and sparsentan both increase nephrotoxicity and/or ototoxicity. Use Caution/Monitor. Coadministration of NSAIDS, including selective COX-2 inhibitors, may result in deterioration of kidney function (eg, possible kidney failure). Monitor for signs of worsening renal function with concomitant use with NSAIDs.

            • spironolactone

              spironolactone and aspirin both increase serum potassium. Modify Therapy/Monitor Closely.

              aspirin decreases effects of spironolactone by unspecified interaction mechanism. Use Caution/Monitor. When used concomitantly, spironolactone dose may need to be titrated to higher maintenance dose and the patient should be observed closely to determine if the desired effect is obtained.

            • stiripentol

              stiripentol, carisoprodol. Either increases effects of the other by sedation. Use Caution/Monitor. Concurrent use of medications with CNS depressant effects together with thalidomide should be avoided due to the risk for additive sedative effects.

              stiripentol, codeine. Either increases effects of the other by sedation. Use Caution/Monitor. Concomitant use stiripentol with other CNS depressants, including alcohol, may increase the risk of sedation and somnolence.

              stiripentol will increase the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Modify Therapy/Monitor Closely. Consider reducing the dose of CYP2C19 substrates, if adverse reactions are experienced when administered concomitantly with stiripentol.

            • succinylcholine

              aspirin and succinylcholine both increase serum potassium. Use Caution/Monitor.

            • sufentanil

              codeine and sufentanil both increase sedation. Use Caution/Monitor.

              carisoprodol and sufentanil both increase sedation. Use Caution/Monitor.

            • sulfamethoxazole

              aspirin, sulfamethoxazole. Either increases effects of the other by plasma protein binding competition. Use Caution/Monitor. Due to high protein binding capacity of both drugs, one may displace the other when coadministered leading to an enhanced effect of the displaced drug; risk is low with low dose aspirin.

            • sulfasalazine

              aspirin and sulfasalazine both increase anticoagulation. Use Caution/Monitor.

              aspirin and sulfasalazine both increase serum potassium. Use Caution/Monitor.

            • sulindac

              aspirin and sulindac both increase anticoagulation. Use Caution/Monitor.

              aspirin and sulindac both increase serum potassium. Use Caution/Monitor.

            • suvorexant

              suvorexant and codeine both increase sedation. Modify Therapy/Monitor Closely. Dosage adjustments of suvorexant and concomitant CNS depressants may be necessary

            • tafluprost

              tafluprost, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).

            • tapentadol

              carisoprodol and tapentadol both increase sedation. Use Caution/Monitor.

            • tapentadol

              codeine and tapentadol both increase sedation. Use Caution/Monitor.

            • tecovirimat

              tecovirimat will increase the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Use Caution/Monitor. Tecovirimat is a weak inhibitor of CYP2C8 and CYP2C19. Monitor for adverse effects if coadministered with sensitive substrates of these enzymes.

            • telmisartan

              telmisartan and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of telmisartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.

              telmisartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals.

            • temazepam

              temazepam and codeine both increase sedation. Use Caution/Monitor.

              temazepam and carisoprodol both increase sedation. Use Caution/Monitor.

            • temocillin

              temocillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.

              temocillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor.

            • tenecteplase

              aspirin, tenecteplase. Either increases toxicity of the other by anticoagulation. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • terazosin

              aspirin decreases effects of terazosin by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.

            • terbinafine

              terbinafine will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Modify Therapy/Monitor Closely. Assess need to reduce dose of CYP2D6-metabolized drug.

            • terbutaline

              aspirin increases and terbutaline decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • thioridazine

              carisoprodol and thioridazine both increase sedation. Use Caution/Monitor.

            • terbutaline

              codeine increases and terbutaline decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • thioridazine

              thioridazine decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

              codeine and thioridazine both increase sedation. Use Caution/Monitor.

            • thiothixene

              codeine and thiothixene both increase sedation. Use Caution/Monitor.

              carisoprodol and thiothixene both increase sedation. Use Caution/Monitor.

            • ticagrelor

              aspirin, ticagrelor. Other (see comment). Use Caution/Monitor. Comment: Maintenance doses of aspirin above 100 mg decreases effectiveness of ticagrelor. Therefore, after the initial loading dose of aspirin (usually 325 mg), use ticagrelor with a maintenance dose of aspirin of 75-100 mg.

            • ticarcillin

              ticarcillin, aspirin. Either increases levels of the other by plasma protein binding competition. Use Caution/Monitor.

              ticarcillin, aspirin. Either increases levels of the other by decreasing renal clearance. Use Caution/Monitor.

            • ticlopidine

              ticlopidine decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • timolol

              timolol and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of timolol by pharmacodynamic antagonism. Use Caution/Monitor. Long term (>1 wk) NSAID use. NSAIDs decrease prostaglandin synthesis.

            • tirofiban

              aspirin, tirofiban. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. The need for simultaneous use of low-dose aspirin and anticoagulant or antiplatelet agents are common for patients with cardiovascular disease; monitor closely.

            • tobramycin inhaled

              tobramycin inhaled and aspirin both increase nephrotoxicity and/or ototoxicity. Modify Therapy/Monitor Closely. Avoid concurrent or sequential use to decrease risk for ototoxicity

            • tolazamide

              aspirin increases effects of tolazamide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.

            • tolbutamide

              aspirin increases effects of tolbutamide by unknown mechanism. Use Caution/Monitor. Risk of hypoglycemia.

            • tolfenamic acid

              aspirin and tolfenamic acid both increase anticoagulation. Use Caution/Monitor.

              aspirin and tolfenamic acid both increase serum potassium. Use Caution/Monitor.

            • tolmetin

              aspirin and tolmetin both increase anticoagulation. Use Caution/Monitor.

              aspirin and tolmetin both increase serum potassium. Use Caution/Monitor.

            • tolvaptan

              aspirin and tolvaptan both increase serum potassium. Use Caution/Monitor.

            • topiramate

              carisoprodol and topiramate both increase sedation. Modify Therapy/Monitor Closely.

            • topiramate

              codeine and topiramate both increase sedation. Modify Therapy/Monitor Closely.

            • torsemide

              aspirin increases and torsemide decreases serum potassium. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • tramadol

              carisoprodol and tramadol both increase sedation. Use Caution/Monitor.

              codeine and tramadol both increase sedation. Use Caution/Monitor.

            • trandolapril

              trandolapril, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly with high dose aspirin, in elderly and volume depleted.

            • tranylcypromine

              tranylcypromine decreases effects of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Prevents conversion of codeine to its active metabolite morphine.

            • travoprost ophthalmic

              travoprost ophthalmic, aspirin. unspecified interaction mechanism. Use Caution/Monitor. There are conflicting reports from studies of either increased or decreased IOP when ophthalmic prostaglandins are coadministered with NSAIDs (either systemic or ophthalmic).

            • trazodone

              trazodone, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.

              carisoprodol and trazodone both increase sedation. Use Caution/Monitor.

            • trazodone

              codeine and trazodone both increase sedation. Use Caution/Monitor.

            • triamcinolone acetonide injectable suspension

              aspirin, triamcinolone acetonide injectable suspension. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Aspirin in conjunction with corticosteroids in hypoprothrombinemia should used with caution. Clearance of salicylates may increase with concurrent use of corticosteroids.

            • triamterene

              triamterene and aspirin both increase serum potassium. Modify Therapy/Monitor Closely.

            • triazolam

              triazolam and carisoprodol both increase sedation. Use Caution/Monitor.

              triazolam and codeine both increase sedation. Use Caution/Monitor.

            • triclabendazole

              triclabendazole will increase the level or effect of carisoprodol by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. If plasma concentrations of the CYP2C19 substrates are elevated during triclabendazole, recheck plasma concentration of the CYP2C19 substrates after discontinuation of triclabendazole.

            • triclofos

              triclofos and codeine both increase sedation. Use Caution/Monitor.

            • triclofos

              triclofos and carisoprodol both increase sedation. Use Caution/Monitor.

            • trifluoperazine

              codeine and trifluoperazine both increase sedation. Use Caution/Monitor.

              carisoprodol and trifluoperazine both increase sedation. Use Caution/Monitor.

            • trimipramine

              codeine and trimipramine both increase sedation. Use Caution/Monitor.

              carisoprodol and trimipramine both increase sedation. Use Caution/Monitor.

            • triprolidine

              triprolidine and codeine both increase sedation. Use Caution/Monitor.

            • valproic acid

              aspirin increases levels of valproic acid by plasma protein binding competition. Use Caution/Monitor.

            • valsartan

              valsartan and aspirin both increase serum potassium. Use Caution/Monitor.

              aspirin decreases effects of valsartan by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. NSAIDs decrease synthesis of vasodilating renal prostaglandins, and thus affect fluid homeostasis and may diminish antihypertensive effect.

              valsartan, aspirin. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: May result in renal function deterioration, particularly in elderly or volume depleted individuals.

            • venlafaxine

              venlafaxine, aspirin. Either increases toxicity of the other by pharmacodynamic synergism. Use Caution/Monitor. Increased risk of upper GI bleeding. SSRIs inhib. serotonin uptake by platelets.

            • voclosporin

              voclosporin, aspirin. Either increases toxicity of the other by nephrotoxicity and/or ototoxicity. Modify Therapy/Monitor Closely. Coadministration with drugs associated with nephrotoxicity may increase the risk for acute and/or chronic nephrotoxicity.

            • vorapaxar

              aspirin, vorapaxar. Either increases effects of the other by anticoagulation. Use Caution/Monitor. Coadministration of anticoagulants, antiplatelets, or other drug affecting coagulation should be monitored periodically due to potential increased risk of bleeding.

              aspirin, vorapaxar. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Additive antiplatelet effect may occur.

            • vortioxetine

              aspirin, vortioxetine. Either increases effects of the other by anticoagulation. Use Caution/Monitor. Risk minimal with low-dose aspirin.

            • warfarin

              aspirin increases effects of warfarin by anticoagulation. Modify Therapy/Monitor Closely. Avoid coadministration of chronic high-dose aspirin. Aspirin's antiplatelet properties may increase anticoagulation effect of warfarin. The need for simultaneous use of low-dose aspirin and warfarin is common for patients with cardiovascular disease. .

            • xylometazoline

              carisoprodol increases and xylometazoline decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • venlafaxine

              venlafaxine will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • xylometazoline

              codeine increases and xylometazoline decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • yohimbine

              codeine increases and yohimbine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • zanubrutinib

              aspirin, zanubrutinib. Either increases effects of the other by anticoagulation. Modify Therapy/Monitor Closely. Zanubrutinib-induced cytopenias increases risk of hemorrhage. Coadministration of zanubritinib with antiplatelets or anticoagulants may further increase this risk.

            • ziconotide

              codeine and ziconotide both increase sedation. Use Caution/Monitor.

              carisoprodol and ziconotide both increase sedation. Use Caution/Monitor.

            • ziprasidone

              codeine and ziprasidone both increase sedation. Use Caution/Monitor.

              carisoprodol and ziprasidone both increase sedation. Use Caution/Monitor.

            • zotepine

              aspirin decreases effects of zotepine by pharmacodynamic antagonism. Use Caution/Monitor. NSAIDs decrease prostaglandin synthesis.

              codeine and zotepine both increase sedation. Use Caution/Monitor.

              carisoprodol and zotepine both increase sedation. Use Caution/Monitor.

            Minor (102)

            • aceclofenac

              aceclofenac will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • acemetacin

              acemetacin will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • acetazolamide

              aspirin will decrease the level or effect of acetazolamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

            • acyclovir

              aspirin will increase the level or effect of acyclovir by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • alendronate

              aspirin, alendronate. Either increases toxicity of the other by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of GI ulceration.

            • aluminum hydroxide

              aluminum hydroxide, aspirin. Mechanism: passive renal tubular reabsorption due to increased pH. Minor/Significance Unknown. Salicylate levels increased at moderate doses; salicylate levels decreased at large doses (d/t increased renal excretion of unchanged salicylic acid).

            • amikacin

              aspirin increases levels of amikacin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.

            • aminohippurate sodium

              aspirin will increase the level or effect of aminohippurate sodium by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • anamu

              aspirin and anamu both increase anticoagulation. Minor/Significance Unknown.

            • anastrozole

              aspirin will decrease the level or effect of anastrozole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

            • ascorbic acid

              ascorbic acid will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

              aspirin decreases levels of ascorbic acid by increasing renal clearance. Minor/Significance Unknown.

              ascorbic acid increases levels of aspirin by decreasing renal clearance. Minor/Significance Unknown.

            • asenapine

              asenapine will increase the level or effect of codeine by affecting hepatic enzyme CYP2D6 metabolism. Minor/Significance Unknown.

            • balsalazide

              aspirin will increase the level or effect of balsalazide by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • bendroflumethiazide

              bendroflumethiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • bismuth subsalicylate

              bismuth subsalicylate increases effects of aspirin by pharmacodynamic synergism. Minor/Significance Unknown.

            • brimonidine

              brimonidine increases effects of codeine by pharmacodynamic synergism. Minor/Significance Unknown. Increased CNS depression.

            • bumetanide

              aspirin, bumetanide. Other (see comment). Minor/Significance Unknown. Comment: Salicylates are less likely than other NSAIDs to interact w/bumetanide.

            • calcium carbonate

              calcium carbonate, aspirin. Mechanism: passive renal tubular reabsorption due to increased pH. Minor/Significance Unknown. Salicylate levels increased at moderate doses; salicylate levels decreased at large doses (d/t increased renal excretion of unchanged salicylic acid).

            • cefadroxil

              cefadroxil will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • cefamandole

              cefamandole will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • cefepime

              cefepime will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • cefixime

              cefixime will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • cefpirome

              cefpirome will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • cefprozil

              cefprozil will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • ceftazidime

              ceftazidime will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • ceftibuten

              ceftibuten will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • celecoxib

              aspirin will increase the level or effect of celecoxib by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • cephalexin

              cephalexin will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • ceritinib

              aspirin will decrease the level or effect of ceritinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

            • chlorothiazide

              chlorothiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • chlorpropamide

              aspirin will increase the level or effect of chlorpropamide by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

              aspirin increases effects of chlorpropamide by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.

            • chlorthalidone

              chlorthalidone will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • choline magnesium trisalicylate

              aspirin will increase the level or effect of choline magnesium trisalicylate by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • chromium

              aspirin increases levels of chromium by unspecified interaction mechanism. Minor/Significance Unknown.

            • cortisone

              cortisone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.

            • creatine

              creatine, aspirin. Mechanism: pharmacodynamic synergism. Minor/Significance Unknown. (Theoretical interaction) Combination may have additive nephrotoxic effects.

            • cyanocobalamin

              aspirin decreases levels of cyanocobalamin by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.

            • cyclopenthiazide

              cyclopenthiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • cyclophosphamide

              aspirin will decrease the level or effect of cyclophosphamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

            • danshen

              aspirin and danshen both increase anticoagulation. Minor/Significance Unknown.

            • deflazacort

              deflazacort decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.

            • devil's claw

              aspirin and devil's claw both increase anticoagulation. Minor/Significance Unknown.

            • dexamethasone

              dexamethasone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.

            • dextroamphetamine

              dextroamphetamine increases effects of codeine by unspecified interaction mechanism. Minor/Significance Unknown.

            • diclofenac

              aspirin will increase the level or effect of diclofenac by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • diclofenac topical

              diclofenac topical, aspirin. Either increases effects of the other by pharmacodynamic synergism. Minor/Significance Unknown. Although low, there is systemic exposure to diclofenac topical; theoretically, concomitant administration with systemic NSAIDS or aspirin may result in increased NSAID adverse effects.

            • diflunisal

              aspirin will increase the level or effect of diflunisal by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • diltiazem

              diltiazem increases effects of aspirin by unknown mechanism. Minor/Significance Unknown. Enhanced antiplatelet activity.

            • eplerenone

              aspirin decreases effects of eplerenone by pharmacodynamic antagonism. Minor/Significance Unknown. NSAIDs decrease prostaglandin synthesis.

            • ethanol

              ethanol increases toxicity of aspirin by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of GI bleeding.

            • etodolac

              aspirin will increase the level or effect of etodolac by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • eucalyptus

              codeine and eucalyptus both increase sedation. Minor/Significance Unknown.

              carisoprodol and eucalyptus both increase sedation. Minor/Significance Unknown.

            • fenbufen

              aspirin will increase the level or effect of fenbufen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • fenoprofen

              aspirin will increase the level or effect of fenoprofen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • feverfew

              aspirin decreases effects of feverfew by pharmacodynamic antagonism. Minor/Significance Unknown.

            • fludrocortisone

              fludrocortisone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.

            • fluoxetine

              fluoxetine decreases effects of codeine by decreasing metabolism. Minor/Significance Unknown. Decreased conversion of codeine to active metabolite morphine.

            • flurbiprofen

              aspirin will increase the level or effect of flurbiprofen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • folic acid

              aspirin decreases levels of folic acid by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.

            • furosemide

              aspirin decreases effects of furosemide by pharmacodynamic antagonism. Minor/Significance Unknown. NSAIDs decrease prostaglandin synthesis.

            • ganciclovir

              aspirin will increase the level or effect of ganciclovir by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • gentamicin

              aspirin increases levels of gentamicin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.

            • glimepiride

              aspirin increases effects of glimepiride by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.

            • glipizide

              aspirin increases effects of glipizide by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.

            • glyburide

              aspirin increases effects of glyburide by plasma protein binding competition. Minor/Significance Unknown. Large dose of salicylate.

            • hydrochlorothiazide

              hydrochlorothiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • hydrocortisone

              hydrocortisone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.

            • ibuprofen

              aspirin will increase the level or effect of ibuprofen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • imidapril

              aspirin decreases effects of imidapril by pharmacodynamic antagonism. Minor/Significance Unknown. NSAIDs decrease prostaglandin synthesis.

            • indapamide

              indapamide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • indomethacin

              aspirin will increase the level or effect of indomethacin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • ketoprofen

              aspirin will increase the level or effect of ketoprofen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • ketorolac

              aspirin will increase the level or effect of ketorolac by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • ketorolac intranasal

              aspirin will increase the level or effect of ketorolac intranasal by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • L-methylfolate

              aspirin decreases levels of L-methylfolate by inhibition of GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.

            • larotrectinib

              aspirin will decrease the level or effect of larotrectinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

            • levoketoconazole

              aspirin will decrease the level or effect of levoketoconazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

            • lornoxicam

              aspirin will increase the level or effect of lornoxicam by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • meclofenamate

              aspirin will increase the level or effect of meclofenamate by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • mefenamic acid

              aspirin will increase the level or effect of mefenamic acid by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • meloxicam

              aspirin will increase the level or effect of meloxicam by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • mesalamine

              aspirin will increase the level or effect of mesalamine by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • methyclothiazide

              methyclothiazide will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • methylprednisolone

              methylprednisolone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.

            • metolazone

              metolazone will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • nabumetone

              aspirin will increase the level or effect of nabumetone by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • naproxen

              aspirin will increase the level or effect of naproxen by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • neomycin PO

              aspirin increases levels of neomycin PO by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.

            • noni juice

              aspirin and noni juice both increase serum potassium. Minor/Significance Unknown.

            • ofloxacin

              ofloxacin, aspirin. Other (see comment). Minor/Significance Unknown. Comment: Risk of CNS stimulation/seizure. Mechanism: Displacement of GABA from receptors in brain.

            • oxaprozin

              aspirin will increase the level or effect of oxaprozin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • parecoxib

              aspirin will increase the level or effect of parecoxib by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • paromomycin

              aspirin increases levels of paromomycin by decreasing renal clearance. Minor/Significance Unknown. Interaction mainly occurs in preterm infants.

            • penicillin VK

              penicillin VK, aspirin. Either increases levels of the other by decreasing renal clearance. Minor/Significance Unknown.

            • pentazocine

              aspirin, pentazocine. Either increases toxicity of the other by pharmacodynamic synergism. Minor/Significance Unknown. Possible risk of renal papillary necrosis w/chronic Tx.

            • piperacillin

              piperacillin, aspirin. Either increases effects of the other by receptor binding competition. Minor/Significance Unknown. Salicylic acid could be displaced from protein binding sites or it could itself displace other protein-bound drugs and result in an enhanced effect of the displaced drug.

            • piroxicam

              aspirin will increase the level or effect of piroxicam by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            • prednisolone

              prednisolone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.

            • prednisone

              prednisone decreases levels of aspirin by increasing renal clearance. Minor/Significance Unknown.

            • rose hips

              rose hips will increase the level or effect of aspirin by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

              aspirin decreases levels of rose hips by increasing renal clearance. Minor/Significance Unknown.

              rose hips increases levels of aspirin by decreasing renal clearance. Minor/Significance Unknown.

            • sage

              carisoprodol and sage both increase sedation. Minor/Significance Unknown.

            • salicylates (non-asa)

              aspirin will increase the level or effect of salicylates (non-asa) by acidic (anionic) drug competition for renal tubular clearance. Minor/Significance Unknown.

            Previous
            Next:

            Adverse Effects

            >10%

            Codeine

            • Constipation
            • Drowsiness

            Carisoprodol

            • Drowsiness (13-17%)

            1-10%

            Codeine

            • Hypotension, tachycardia or bradycardia, confusion, dizziness, false feeling of well being, headache, lightheadedness, malaise, paradoxical CNS stimulation, restlessness, rash, urticaria, anorexia, nausea, vomiting, xerostomia, ureteral spasm, urination decreased, LFT's increased, burning at injection site, weakness, blurred vision, dyspnea, histamine release

            Carisoprodol

            • Dizziness (7-8%)
            • Headache (3-5%)

            Frequency Not Defined

            Carisoprodol

            • Cardiovascular: orthostatic hypotension, syncope, tachycardia, central nervous system: agitation, irritability, depression, allergic/idiosyncratic reactions (eg, pruritus, rash, dizziness), gastrointestinal: epigastric distress, N/V, facial flushing, weakness

            Aspirin

            • stomach pain, heartburn, nausea, vomiting, dyspepsia, tinnitus (high or chronic dose), rash, urticaria
            Previous
            Next:

            Warnings

            Black Box Warnings

            Opioid analgesic risk evaluation and mitigation strategy (REMS)

            • To ensure that benefits of opioid analgesics outweigh risks of addiction, abuse, and misuse, the Food and Drug Administration (FDA) has required a REMS for these products; under requirements of the REMS, drug companies with approved opioid analgesic products must make REMS-compliant education programs available to healthcare providers
            • Healthcare providers are strongly encouraged to:
              • Complete a REMS-compliant education program
              • Counsel patients and/or their caregivers, with every prescription, on safe use, serious risks, storage, and disposal of these products
              • Emphasize to patients and their caregivers the importance of reading the Medication Guide every time it is provided by their pharmacist
              • Consider other tools to improve patient, household, and community safety

            Addiction, abuse, and misuse

            • Risk of opioid addiction, abuse, and misuse, which can lead to overdose and death; assess each patient’s risk prior to prescribing and monitor all patients regularly for the development of these behaviors or conditions

            Life-threatening respiratory depression

            • Serious, life-threatening, or fatal respiratory depression may occur
            • Monitor for respiratory depression, especially during initiation or following a dose increase

            Accidental ingestion

            • Accidental ingestion of even 1 dose, especially by children, can result in a fatal overdose

            Neonatal opioid withdrawal syndrome

            • Prolonged use during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated, and requires management according to protocols developed by neonatology experts
            • If opioid use is required for a prolonged period in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available

            Ultra-rapid metabolism of codeine and other risk factors for life-threatening respiratory depression in children

            • Respiratory depression and death reported in children who received codeine following tonsillectomy and/or adenoidectomy that were also ultra-rapid metabolizers of codeine due to CYP2D6 polymorphism
            • Contraindicated in children <12 years and in children <18 years following tonsillectomy and/or adenoidectomy; avoid use in adolescents 12-18 years who have risk factors that may increase sensitivity to respiratory depressant effects of codeine

            Interactions with drugs affecting cytochrome P450 isoenzymes

            • Use of cytochrome P450 3A4 inducers, 3A4 inhibitors, or 2D6 inhibitors requires careful consideration of the effects on parent drug, codeine, and active metabolite, morphine

            Risks from concomitant use with benzodiazepines or other CNS depressants

            • Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death
            • Reserve concomitant prescribing of codeine sulfate tablets and benzodiazepines or other CNS depressants for use in patients for whom alternative treatment options are inadequate
            • Limit dosages and durations to minimum required
            • Follow patients for signs and symptoms of respiratory depression and sedation

            Contraindications

            Hypersensitivity

            Children younger than 16 years old because of potential for Reye syndrome

            Bronchospastic reaction to aspirin

            Peptic ulcer disease

            Repeated administration in patients with anemia, cardiovascular, pulmonary, or renal disease

            Porphyria

            Postoperative use in children following tonsillectomy and/or adenoidectomy (see Black Box Warnings)

            Cautions

            Gastrointestinal bleeding; particular caution in patients with history of GI bleed, alcoholism, or bleeding disorders

            Avoid driving car or operating machinery

            Reye syndrome may occur in children because of aspirin component; do not use for chickenpox or flu symptoms

            Avoid in severe renal impairment (ie, CrCl <10 mL/min)

            May increase respiratory depressant effects; caution with head injury, COPD, or other conditions with decreased respiratory drive

            Codeine and carisoprodol may cause tolerance/dependency

            Previous
            Next:

            Pregnancy & Lactation

            Pregnancy category: D; avoid during pregnancy, particularly in third trimester because of risk for premature closure of the ductus arteriosus because of aspirin component; codeine may prolong delivery and cause respiratory depression/withdrawal symptoms in newborn

            Lactation: excreted in breast milk; do not breast feed

            Pregnancy Categories

            A: Generally acceptable. Controlled studies in pregnant women show no evidence of fetal risk.

            B: May be acceptable. Either animal studies show no risk but human studies not available or animal studies showed minor risks and human studies done and showed no risk.

            C: Use with caution if benefits outweigh risks. Animal studies show risk and human studies not available or neither animal nor human studies done.

            D: Use in LIFE-THREATENING emergencies when no safer drug available. Positive evidence of human fetal risk.

            X: Do not use in pregnancy. Risks involved outweigh potential benefits. Safer alternatives exist.

            NA: Information not available.

            Previous
            Next:

            Pharmacology

            Mechanism of Action

            Codeine: Opioid agonist; analgesia

            Aspirin: Acts on hypothalamus to produce antipyresis; anti-inflammatory properties attributed to prostaglandin synthetase inhibition resulting in decreased formation of thromboxane A2

            Carisoprodol: Centrally acting skeletal muscle relaxant (no direct muscle relaxation); partially metabolized to meprobamate which elicits anxiolytic/sedative effects

            Pharmacogenomics

            10% of codeine is metabolized to morphine by CYP2D6; the active morphine metabolite has a higher affinity for opioid receptors

            CYP2D6 poor metabolizers may not achieve adequate analgesia

            Ultra-rapid metabolizers (up to 7% of Caucasians and up to 30% of Asian and African populations) may have increased toxicity due to rapid conversion

            Previous
            Next:

            Images

            No images available for this drug.
            Previous
            Next:

            Patient Handout

            A Patient Handout is not currently available for this monograph.
            Previous
            Next:

            Formulary

            FormularyPatient Discounts

            Adding plans allows you to compare formulary status to other drugs in the same class.

            To view formulary information first create a list of plans. Your list will be saved and can be edited at any time.

            Adding plans allows you to:

            • View the formulary and any restrictions for each plan.
            • Manage and view all your plans together – even plans in different states.
            • Compare formulary status to other drugs in the same class.
            • Access your plan list on any device – mobile or desktop.

            The above information is provided for general informational and educational purposes only. Individual plans may vary and formulary information changes. Contact the applicable plan provider for the most current information.

            Tier Description
            1 This drug is available at the lowest co-pay. Most commonly, these are generic drugs.
            2 This drug is available at a middle level co-pay. Most commonly, these are "preferred" (on formulary) brand drugs.
            3 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs.
            4 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs or specialty prescription products.
            5 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs or specialty prescription products.
            6 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs or specialty prescription products.
            NC NOT COVERED – Drugs that are not covered by the plan.
            Code Definition
            PA Prior Authorization
            Drugs that require prior authorization. This restriction requires that specific clinical criteria be met prior to the approval of the prescription.
            QL Quantity Limits
            Drugs that have quantity limits associated with each prescription. This restriction typically limits the quantity of the drug that will be covered.
            ST Step Therapy
            Drugs that have step therapy associated with each prescription. This restriction typically requires that certain criteria be met prior to approval for the prescription.
            OR Other Restrictions
            Drugs that have restrictions other than prior authorization, quantity limits, and step therapy associated with each prescription.
            Additional Offers
            Email to Patient

            From:

            To:

            The recipient will receive more details and instructions to access this offer.

            By clicking send, you acknowledge that you have permission to email the recipient with this information.

            Email Forms to Patient

            From:

            To:

            The recipient will receive more details and instructions to access this offer.

            By clicking send, you acknowledge that you have permission to email the recipient with this information.

            Previous
            Medscape prescription drug monographs are based on FDA-approved labeling information, unless otherwise noted, combined with additional data derived from primary medical literature.