oxycodone/naloxone (Rx)

Brand and Other Names:Targiniq ER
  • Print

Dosing & Uses

AdultPediatricGeriatric

Dosing Forms & Strengths

oxycodone/naloxone

extended-release tablet: Schedule II

  • 10 mg/5 mg
  • 20 mg/10 mg
  • 40 mg/20 mg

Chronic Pain

Indicated for the management of pain severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate

Use as first opioid analgesic or in non-opioid tolerant patients

  • Starting dose: 10 mg/5 mg PO q12hr
  • Use of higher starting doses in patients who are not opioid tolerant may cause fatal respiratory depression

Titration and maintenance

  • May be up-titrated from current dose by increasing by 10 mg/5 mg q12hr q1-2 days as needed based on efficacy, safety, and tolerability
  • Not to exceed daily dose of 80 mg/40 mg (ie, 40 mg/20 mg q12hr)
  • If breakthrough pain experienced, assess need for a dosage increase or a rescue dose of an immediate-release analgesic

Opioid tolerant patients

  • Patients who are opioid tolerant are those receiving the following for ≥1 week:
  • -≥60 mg/day PO morphine
  • -≥25 mcg/hr transdermal fentanyl
  • -≥30 mg/day PO oxycodone
  • -≥8 mg/day PO hydromorphone
  • -≥25 mg/day PO oxymorphone, OR
  • -Equianalgesic dose of another opioid

Conversion to oxycodone/naloxone

Conversion from other PO oxycodone

  • Administer one-half of the patient's total daily PO oxycodone dose as Targiniq ER q12hr
  • Not to exceed daily dose of 80 mg/40 mg (ie, 40 mg/20 mg q12hr)

Conversion from other opioids

  • Discontinue all other around-the-clock opioid drugs when initiating oxycodone/naloxone
  • When converting patients to oxycodone/naloxone, it is safer to underestimate a patient’s 24-hr oral oxycodone requirements and provide rescue medication (eg, immediate-release opioid) than to overestimate the 24-hr oral oxycodone requirements, which could result in adverse reactions
  • First convert current opioid to equivalent daily PO morphine dose, and then convert the morphine equivalent daily dose to the recommended oxycodone/naloxone dose (see Prescribing information for conversion table and example)
  • Then convert from equivalent daily PO morphine dose to oxycodone/naloxone (see following):
  • -Morphine 20 mg to <70 mg PO: 10 mg/5 mg PO q12hr
  • -Morphine 70 mg to <110 mg PO: 20 mg/10 mg PO q12hr
  • -Morphine 110 mg to <150 mg PO: 30 mg/15 mg PO q12hr
  • -Morphine 150-160 mg PO: 40 mg/20 mg PO q12hr

Conversion from methadone

  • Close monitoring is essential when converting from methadone to other opioid agonists
  • The ratio between methadone and other opioid agonists may vary widely as a function of previous dose exposure
  • Methadone has a long half-life and can accumulate in plasma

Conversion from transdermal fentanyl

  • May initiate oxycodone/naloxone 18 hr after removing transdermal fentanyl patch
  • A conservative estimated dose of ~10 mg/5 mg q12hr oxycodone/naloxone should be substituted for each 25 mcg/hr fentanyl patch
  • Not to exceed daily dose of 80 mg/40 mg (ie, 40 mg/20 mg q12hr)
  • Monitor closely during conversion; limited documented experience with this conversion

Conversion from transdermal buprenorphine

  • Transdermal buprenorphine <20 mcg/hr: oxycodone/naloxone 10 mg/5 mg q12hr oxycodone/naloxone
  • Not to exceed daily dose of 80 mg/40 mg (ie, 40 mg/20 mg q12hr)
  • Monitor closely during conversion; limited documented experience with this conversion

Dosage Modifications

Hepatic impairment

  • Mild: Reduce dose by one-third to one-half of the usual starting dose followed by careful titration
  • Moderate-to-severe: Contraindicated

Renal impairment

  • Reduce dose by one-half of the usual starting dose followed by careful dose titration

Dosing Considerations

Not indicated for prn analgesic

Administration

May take with or without food

Tablets must be swallowed intact and are not to be cut, broken, chewed, crushed, or dissolved (risk of rapid release and absorption of potentially fatal overdose)

Do not abruptly discontinue in a physically dependent patient; use a gradual downward titration to prevent withdrawal (see Prescribing information for suggested taper schedule)

<18 years: Safety and efficacy not established

See adult dosing

Higher oxycodone AUC (18% increase) and higher naloxone AUC (82% increase) for patients aged ≥65 yr compared with younger patients

Next:

Interactions

Interaction Checker

and oxycodone/naloxone

No Results

     activity indicator 
    No Interactions Found
    Interactions Found

    Contraindicated

      Serious - Use Alternative

        Significant - Monitor Closely

          Minor

            All Interactions Sort By:
             activity indicator 

            Contraindicated (1)

            • alvimopan

              alvimopan, oxycodone. receptor binding competition. Contraindicated. Alvimopan is contraindicated in opioid tolerant patients (ie, those who have taken therapeutic doses of opioids for >7 consecutive days immediately prior to taking alvimopan). Patients recently exposed to opioids are expected to be more sensitive to the effects of alvimopan and therefore may experience abdominal pain, nausea and vomiting, and diarrhea. No significant interaction is expected with concurrent use of opioid analgesics and alvimopan in patients who received opioid analgesics for 7 or fewer consecutive days prior to alvimopan.

            Serious - Use Alternative (78)

            • abametapir

              abametapir will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. For 2 weeks after abametapir application, avoid taking drugs that are CYP3A4 substrates. If not feasible, avoid use of abametapir.

            • acrivastine

              acrivastine and oxycodone both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • amisulpride

              amisulpride and oxycodone both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • amobarbital

              amobarbital will decrease the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.

            • apalutamide

              apalutamide will decrease the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.

            • artemether/lumefantrine

              artemether/lumefantrine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Avoid or Use Alternate Drug.

            • asenapine

              asenapine and oxycodone both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • asenapine transdermal

              asenapine transdermal and oxycodone both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • atazanavir

              atazanavir increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • avapritinib

              avapritinib and oxycodone both increase sedation. Avoid or Use Alternate Drug. Limit use to patients for whom alternative treatment options are inadequate

            • benzhydrocodone/acetaminophen

              benzhydrocodone/acetaminophen, oxycodone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • bremelanotide

              bremelanotide will decrease the level or effect of oxycodone by Other (see comment). Avoid or Use Alternate Drug. Bremelanotide may slow gastric emptying and potentially reduces the rate and extent of absorption of concomitantly administered oral medications. Avoid use when taking any oral drug that is dependent on threshold concentrations for efficacy. Interactions listed are representative examples and do not include all possible clinical examples.

            • buprenorphine

              buprenorphine, oxycodone. Other (see comment). Avoid or Use Alternate Drug. Comment: Mixed opiate agonist/antagonists usually produce additive sedation with narcotics; however, in narcotic addicted pts., the antagonist activity may provoke withdrawal Sx.

            • buprenorphine buccal

              buprenorphine buccal, oxycodone. Other (see comment). Avoid or Use Alternate Drug. Comment: Mixed opiate agonist/antagonists usually produce additive sedation with narcotics; however, in narcotic addicted pts., the antagonist activity may provoke withdrawal Sx.

            • butorphanol

              butorphanol, oxycodone. Other (see comment). Avoid or Use Alternate Drug. Comment: Mixed opiate agonist/antagonists usually produce additive sedation with narcotics; however, in narcotic addicted pts., the antagonist activity may provoke withdrawal Sx.

            • calcium/magnesium/potassium/sodium oxybates

              oxycodone, calcium/magnesium/potassium/sodium oxybates. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • cimetidine

              cimetidine increases effects of oxycodone by decreasing metabolism. Avoid or Use Alternate Drug.

            • clarithromycin

              clarithromycin increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • clonidine

              clonidine, oxycodone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration enhances CNS depressant effects.

            • conivaptan

              conivaptan increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • diazepam intranasal

              diazepam intranasal, oxycodone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • eluxadoline

              oxycodone, eluxadoline. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Avoid coadministration with other drugs that cause constipation. Increases risk for constipation related serious adverse reactions. .

            • eszopiclone

              eszopiclone and oxycodone both increase sedation. Avoid or Use Alternate Drug. Additive CNS depression may lead to hypotension, profound sedation, respiratory depression, or coma

            • fentanyl

              fentanyl, oxycodone. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration with other CNS depressants, such as skeletal muscle relaxants, may cause respiratory depression, hypotension, profound sedation, coma, and/or death. Consider dose reduction of either or both agents to avoid serious adverse effects. Monitor for hypotension, respiratory depression, and profound sedation.

            • fentanyl intranasal

              fentanyl intranasal, oxycodone. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration with other CNS depressants, such as skeletal muscle relaxants, may cause respiratory depression, hypotension, profound sedation, coma, and/or death. Consider dose reduction of either or both agents to avoid serious adverse effects. Monitor for hypotension, respiratory depression, and profound sedation.

            • fentanyl transdermal

              fentanyl transdermal, oxycodone. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration with other CNS depressants, such as skeletal muscle relaxants, may cause respiratory depression, hypotension, profound sedation, coma, and/or death. Consider dose reduction of either or both agents to avoid serious adverse effects. Monitor for hypotension, respiratory depression, and profound sedation.

            • fentanyl transmucosal

              fentanyl transmucosal, oxycodone. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration with other CNS depressants, such as skeletal muscle relaxants, may cause respiratory depression, hypotension, profound sedation, coma, and/or death. Consider dose reduction of either or both agents to avoid serious adverse effects. Monitor for hypotension, respiratory depression, and profound sedation.

            • fexinidazole

              fexinidazole will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Fexinidazole inhibits CYP3A4. Coadministration may increase risk for adverse effects of CYP3A4 substrates.

            • fluoxetine

              oxycodone will increase the level or effect of fluoxetine by affecting hepatic enzyme CYP2D6 metabolism. Avoid or Use Alternate Drug. Opioids may enhance the serotonergic effects of SSRIs and increase risk for serotonergic syndrome

            • fosamprenavir

              fosamprenavir increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors .

            • grapefruit

              grapefruit will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.

            • hydrocodone

              hydrocodone, oxycodone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • idelalisib

              idelalisib will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Idelalisib is a strong CYP3A inhibitor; avoid coadministration with sensitive CYP3A substrates

            • imatinib

              imatinib increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • indinavir

              indinavir increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • isocarboxazid

              isocarboxazid increases toxicity of oxycodone by unknown mechanism. Avoid or Use Alternate Drug. Risk of hypotension, hyperpyrexia, somnolence, or death; separate by 14 d.

            • isoniazid

              isoniazid increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • ivosidenib

              ivosidenib will decrease the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of sensitive CYP3A4 substrates with ivosidenib or replace with alternative therapies. If coadministration is unavoidable, monitor patients for loss of therapeutic effect of these drugs.

            • larotrectinib

              larotrectinib will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.

            • linezolid

              linezolid increases toxicity of oxycodone by unknown mechanism. Avoid or Use Alternate Drug. Risk of hypotension, hyperpyrexia, somnolence, or death; separate by 14 d.

            • lopinavir

              lopinavir increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • lumefantrine

              lumefantrine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Avoid or Use Alternate Drug.

            • methylene blue

              methylene blue and oxycodone both increase serotonin levels. Avoid or Use Alternate Drug. If drug combination must be administered, monitor for evidence of serotonergic or opioid-related toxicities

            • metoclopramide intranasal

              oxycodone, metoclopramide intranasal. Either increases effects of the other by Other (see comment). Avoid or Use Alternate Drug. Comment: Avoid use of metoclopramide intranasal or interacting drug, depending on importance of drug to patient.

            • nalbuphine

              nalbuphine, oxycodone. Other (see comment). Avoid or Use Alternate Drug. Comment: Mixed opiate agonist/antagonists usually produce additive sedation with narcotics; however, in narcotic addicted pts., the antagonist activity may provoke withdrawal Sx.

            • nefazodone

              nefazodone increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • nelfinavir

              nelfinavir increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • nicardipine

              nicardipine increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • olopatadine intranasal

              oxycodone and olopatadine intranasal both increase sedation. Avoid or Use Alternate Drug. Coadministration increases risk of CNS depression, which can lead to additive impairment of psychomotor performance and cause daytime impairment.

            • ozanimod

              ozanimod and oxycodone both increase sympathetic (adrenergic) effects, including increased blood pressure and heart rate. Avoid or Use Alternate Drug. Because the active metabolite of ozanimod inhibits MAO-B in vitro, there is a potential for serious adverse reactions, including hypertensive crisis. Therefore, coadministration of ozanimod with drugs that can increase norepinephrine or serotonin is not recommended. Monitor for hypertension with concomitant use.

            • paroxetine

              paroxetine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Avoid or Use Alternate Drug.

            • pentazocine

              pentazocine, oxycodone. Other (see comment). Avoid or Use Alternate Drug. Comment: Mixed opiate agonist/antagonists usually produce additive sedation with narcotics; however, in narcotic addicted pts., the antagonist activity may provoke withdrawal Sx.

            • phenelzine

              phenelzine increases toxicity of oxycodone by unknown mechanism. Avoid or Use Alternate Drug. Risk of hypotension, hyperpyrexia, somnolence, or death; separate by 14 d.

            • posaconazole

              posaconazole increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • prasugrel

              oxycodone will decrease the level or effect of prasugrel by inhibition of GI absorption. Applies only to oral form of both agents. Avoid or Use Alternate Drug. Co-administration of opioid agonists delay and reduce absorption of prasugrel and its active metabolite presumably by slowing gastric emptying; consider the use of a parenteral anti-platelet agent in acute coronary syndrome patients requiring co-administration of opioid agonists

            • procarbazine

              procarbazine increases toxicity of oxycodone by unknown mechanism. Avoid or Use Alternate Drug. MAOIs may potentiate CNS depression and hypotension. Do not use within 14 days of MAOI use. .

            • quinidine

              quinidine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Avoid or Use Alternate Drug.

              quinidine increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • ramelteon

              ramelteon and oxycodone both increase sedation. Avoid or Use Alternate Drug. Additive CNS depression may lead to hypotension, profound sedation, respiratory depression, or coma

            • rasagiline

              rasagiline increases toxicity of oxycodone by unknown mechanism. Avoid or Use Alternate Drug. May cause additive CNS depression, drowsiness, dizziness or hypotension, so use with MAOIs should be cautious; lower initial dosages of the analgesic are recommended followed by careful titration. Avoid combination within 14 days of MAOI use.

            • ritonavir

              ritonavir increases levels of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

              ritonavir increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • saquinavir

              saquinavir increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • secobarbital

              secobarbital will decrease the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. May also enhance CNS depressant effect of oxycodone

            • selegiline transdermal

              selegiline transdermal increases toxicity of oxycodone by unknown mechanism. Avoid or Use Alternate Drug. Risk of hypotension, hyperpyrexia, somnolence, or death.

            • selinexor

              selinexor, oxycodone. unspecified interaction mechanism. Avoid or Use Alternate Drug. Patients treated with selinexor may experience neurological toxicities. Avoid taking selinexor with other medications that may cause dizziness or confusion.

            • sodium oxybate

              oxycodone, sodium oxybate. Either increases effects of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • sufentanil SL

              sufentanil SL, oxycodone. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. Coadministration may result in hypotension, profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • suvorexant

              suvorexant and oxycodone both increase sedation. Avoid or Use Alternate Drug. Additive CNS depression may lead to hypotension, profound sedation, respiratory depression, or coma

            • tasimelteon

              tasimelteon and oxycodone both increase sedation. Avoid or Use Alternate Drug. Additive CNS depression may lead to hypotension, profound sedation, respiratory depression, or coma

            • ticagrelor

              oxycodone will decrease the level or effect of ticagrelor by inhibition of GI absorption. Applies only to oral form of both agents. Avoid or Use Alternate Drug. Co-administration of opioid agonists delay and reduce absorption of ticagrelor and its active metabolite presumably by slowing gastric emptying; consider the use of a parenteral anti-platelet agent in acute coronary syndrome patients requiring co-administration of opioid agonists

            • tipranavir

              tipranavir increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • tramadol

              tramadol, oxycodone. Other (see comment). Avoid or Use Alternate Drug. Comment: Tramadol may reinitiate opiate dependence in pts. previously addicted to other opiates; it may also provoke withdrawal Sx. in pts. who are currently opiate dependent.

            • tranylcypromine

              tranylcypromine increases toxicity of oxycodone by unknown mechanism. Avoid or Use Alternate Drug. Risk of hypotension, hyperpyrexia, somnolence, or death; separate by 14 d.

            • tucatinib

              tucatinib will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid concomitant use of tucatinib with CYP3A substrates, where minimal concentration changes may lead to serious or life-threatening toxicities. If unavoidable, reduce CYP3A substrate dose according to product labeling.

            • valerian

              valerian and oxycodone both increase sedation. Avoid or Use Alternate Drug.

            • voriconazole

              voriconazole increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • voxelotor

              voxelotor will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Voxelotor increases systemic exposure of sensitive CYP3A4 substrates. Avoid coadministration with sensitive CYP3A4 substrates with a narrow therapeutic index. Consider dose reduction of the sensitive CYP3A4 substrate(s) if unable to avoid.

            • zaleplon

              zaleplon and oxycodone both increase sedation. Avoid or Use Alternate Drug. Additive CNS depression may lead to hypotension, profound sedation, respiratory depression, or coma

            • zolpidem

              zolpidem and oxycodone both increase sedation. Avoid or Use Alternate Drug. Additive CNS depression may lead to hypotension, profound sedation, respiratory depression, or coma

            Monitor Closely (266)

            • albuterol

              oxycodone increases and albuterol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • alfentanil

              alfentanil and oxycodone both increase sedation. Use Caution/Monitor.

            • alprazolam

              alprazolam and oxycodone both increase sedation. Use Caution/Monitor.

            • amiodarone

              amiodarone will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • amitriptyline

              oxycodone and amitriptyline both increase sedation. Use Caution/Monitor.

            • amobarbital

              amobarbital and oxycodone both increase sedation. Use Caution/Monitor.

            • amoxapine

              oxycodone and amoxapine both increase sedation. Use Caution/Monitor.

            • apomorphine

              oxycodone and apomorphine both increase sedation. Use Caution/Monitor.

            • arformoterol

              oxycodone increases and arformoterol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • aripiprazole

              oxycodone and aripiprazole both increase sedation. Use Caution/Monitor.

            • armodafinil

              oxycodone increases and armodafinil decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • asenapine

              asenapine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • atracurium

              oxycodone increases effects of atracurium by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Oxycodone may enhance the neuromuscular blocking action of true skeletal muscle relaxants and produce an increased degree of respiratory depression.

            • azelastine

              azelastine and oxycodone both increase sedation. Use Caution/Monitor.

            • baclofen

              baclofen and oxycodone both increase sedation. Use Caution/Monitor.

            • belladonna and opium

              belladonna and opium and oxycodone both increase sedation. Use Caution/Monitor.

            • benperidol

              oxycodone and benperidol both increase sedation. Use Caution/Monitor.

            • benzphetamine

              oxycodone increases and benzphetamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • bosentan

              bosentan decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • brexanolone

              brexanolone, oxycodone. Either increases toxicity of the other by sedation. Use Caution/Monitor.

            • brompheniramine

              brompheniramine and oxycodone both increase sedation. Use Caution/Monitor.

            • buprenorphine

              buprenorphine and oxycodone both increase sedation. Use Caution/Monitor.

            • buprenorphine buccal

              buprenorphine buccal and oxycodone both increase sedation. Use Caution/Monitor.

            • buprenorphine, long-acting injection

              oxycodone increases toxicity of buprenorphine, long-acting injection by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of buprenorphine and benzodiazepines or other CNS depressants increases risk of adverse reactions including overdose, respiratory depression, and death. Cessation of benzodiazepines or other CNS depressants is preferred in most cases. In some cases, monitoring at a higher level of care for tapering CNS depressants may be appropriate. In others, gradually tapering a patient off of a prescribed benzodiazepine or other CNS depressant or decreasing to the lowest effective dose may be appropriate.

            • bupropion

              bupropion will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • butabarbital

              butabarbital and oxycodone both increase sedation. Use Caution/Monitor.

            • butalbital

              butalbital and oxycodone both increase sedation. Use Caution/Monitor.

            • butorphanol

              butorphanol and oxycodone both increase sedation. Use Caution/Monitor.

            • caffeine

              oxycodone increases and caffeine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • carbamazepine

              carbamazepine decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • carbinoxamine

              carbinoxamine and oxycodone both increase sedation. Use Caution/Monitor.

            • carisoprodol

              carisoprodol and oxycodone both increase sedation. Use Caution/Monitor.

            • celecoxib

              celecoxib will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • cenobamate

              cenobamate will decrease the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Increase dose of CYP3A4 substrate, as needed, when coadministered with cenobamate.

              cenobamate, oxycodone. Either increases effects of the other by sedation. Use Caution/Monitor.

            • ceritinib

              ceritinib will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • chloral hydrate

              chloral hydrate and oxycodone both increase sedation. Use Caution/Monitor.

            • chloramphenicol

              chloramphenicol will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • chlordiazepoxide

              chlordiazepoxide and oxycodone both increase sedation. Use Caution/Monitor.

            • chloroquine

              chloroquine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • chlorpheniramine

              chlorpheniramine and oxycodone both increase sedation. Use Caution/Monitor.

            • chlorpromazine

              oxycodone and chlorpromazine both increase sedation. Use Caution/Monitor.

            • chlorzoxazone

              chlorzoxazone and oxycodone both increase sedation. Use Caution/Monitor.

            • cimetidine

              cimetidine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • cinnarizine

              cinnarizine and oxycodone both increase sedation. Use Caution/Monitor.

            • cisatracurium

              oxycodone increases effects of cisatracurium by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Oxycodone may enhance the neuromuscular blocking action of true skeletal muscle relaxants and produce an increased degree of respiratory depression.

            • citalopram

              oxycodone increases effects of citalopram by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Opioids may enhance the serotonergic effects of SSRIs and increase risk for serotonergic syndrome.

            • clemastine

              clemastine and oxycodone both increase sedation. Use Caution/Monitor.

            • clobazam

              oxycodone, clobazam. Other (see comment). Use Caution/Monitor. Comment: Concomitant administration can increase the potential for CNS effects (e.g., increased sedation or respiratory depression).

            • clomipramine

              oxycodone and clomipramine both increase sedation. Use Caution/Monitor.

            • clonazepam

              clonazepam and oxycodone both increase sedation. Use Caution/Monitor.

            • clorazepate

              clorazepate and oxycodone both increase sedation. Use Caution/Monitor.

            • clozapine

              oxycodone and clozapine both increase sedation. Use Caution/Monitor.

            • cobicistat

              cobicistat will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. If coadministration of CYP3A4 inhibitors with fentanyl is necessary, monitor for respiratory depression and sedation at frequent intervals and consider fentanyl dose adjustments until stable drug effects are achieved.

            • codeine

              codeine and oxycodone both increase sedation. Use Caution/Monitor.

            • crizotinib

              crizotinib increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Dose reduction may be needed for coadministered drugs that are predominantly metabolized by CYP3A.

            • crofelemer

              crofelemer increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Crofelemer has the potential to inhibit CYP3A4 at concentrations expected in the gut; unlikely to inhibit systemically because minimally absorbed.

            • cyclizine

              cyclizine and oxycodone both increase sedation. Use Caution/Monitor.

            • cyclobenzaprine

              cyclobenzaprine and oxycodone both increase sedation. Use Caution/Monitor.

            • cyproheptadine

              cyproheptadine and oxycodone both increase sedation. Use Caution/Monitor.

            • dabrafenib

              dabrafenib decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • dantrolene

              dantrolene and oxycodone both increase sedation. Use Caution/Monitor.

            • daridorexant

              oxycodone and daridorexant both increase sedation. Modify Therapy/Monitor Closely. Coadministration increases risk of CNS depression, which can lead to additive impairment of psychomotor performance and cause daytime impairment.

            • darifenacin

              darifenacin will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • darunavir

              darunavir increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • desflurane

              desflurane and oxycodone both increase sedation. Use Caution/Monitor. Opioids may decrease MAC requirements, less inhalation anesthetic may be required.

            • desipramine

              oxycodone and desipramine both increase sedation. Use Caution/Monitor.

            • desvenlafaxine

              desvenlafaxine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor. Desvenlafaxine inhibits CYP2D6; with higher desvenlafaxine doses (ie, 400 mg) decrease the CYP2D6 substrate dose by up to 50%; no dosage adjustment needed with desvenlafaxine doses <100 mg

            • deutetrabenazine

              oxycodone and deutetrabenazine both increase sedation. Use Caution/Monitor.

            • dexamethasone

              dexamethasone decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • dexchlorpheniramine

              dexchlorpheniramine and oxycodone both increase sedation. Use Caution/Monitor.

            • dexfenfluramine

              oxycodone increases and dexfenfluramine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • dexmedetomidine

              dexmedetomidine and oxycodone both increase sedation. Use Caution/Monitor.

            • dexmethylphenidate

              oxycodone increases and dexmethylphenidate decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • dextroamphetamine

              oxycodone increases and dextroamphetamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • dextromoramide

              dextromoramide and oxycodone both increase sedation. Use Caution/Monitor.

            • diamorphine

              diamorphine and oxycodone both increase sedation. Use Caution/Monitor.

            • diazepam

              diazepam and oxycodone both increase sedation. Use Caution/Monitor.

            • dichlorphenamide

              dichlorphenamide, oxycodone. Either increases toxicity of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Both drugs can cause metabolic acidosis.

            • diethylpropion

              oxycodone increases and diethylpropion decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • difelikefalin

              difelikefalin and oxycodone both increase sedation. Use Caution/Monitor.

            • difenoxin hcl

              difenoxin hcl and oxycodone both increase sedation. Use Caution/Monitor.

            • diltiazem

              diltiazem will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • dimenhydrinate

              dimenhydrinate and oxycodone both increase sedation. Use Caution/Monitor.

            • diphenhydramine

              diphenhydramine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

              diphenhydramine and oxycodone both increase sedation. Use Caution/Monitor.

            • diphenoxylate hcl

              diphenoxylate hcl and oxycodone both increase sedation. Use Caution/Monitor.

            • dipipanone

              dipipanone and oxycodone both increase sedation. Use Caution/Monitor.

            • dobutamine

              oxycodone increases and dobutamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • dopamine

              oxycodone increases and dopamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • dopexamine

              oxycodone increases and dopexamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • dosulepin

              oxycodone and dosulepin both increase sedation. Use Caution/Monitor.

            • doxepin

              oxycodone and doxepin both increase sedation. Use Caution/Monitor.

            • doxylamine

              doxylamine and oxycodone both increase sedation. Use Caution/Monitor.

            • dronedarone

              dronedarone will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • droperidol

              oxycodone and droperidol both increase sedation. Use Caution/Monitor.

            • duloxetine

              duloxetine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • duvelisib

              duvelisib will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with duvelisib increases AUC of a sensitive CYP3A4 substrate which may increase the risk of toxicities of these drugs. Consider reducing the dose of the sensitive CYP3A4 substrate and monitor for signs of toxicities of the coadministered sensitive CYP3A substrate.

            • efavirenz

              efavirenz decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • elagolix

              elagolix decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Elagolix is a weak-to-moderate CYP3A4 inducer. Monitor CYP3A substrates if coadministered. Consider increasing CYP3A substrate dose if needed.

            • eltrombopag

              eltrombopag increases levels of oxycodone by decreasing metabolism. Use Caution/Monitor. UGT inhibition; significance of interaction unclear.

            • elvitegravir/cobicistat/emtricitabine/tenofovir DF

              elvitegravir/cobicistat/emtricitabine/tenofovir DF increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Cobicistat is a CYP3A4 inhibitor; contraindicated with CYP3A4 substrates for which elevated plasma concentrations are associated with serious and/or life-threatening events.

            • encorafenib

              encorafenib, oxycodone. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Encorafenib both inhibits and induces CYP3A4 at clinically relevant plasma concentrations. Coadministration of encorafenib with sensitive CYP3A4 substrates may result in increased toxicity or decreased efficacy of these agents.

            • enzalutamide

              enzalutamide decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • ephedrine

              oxycodone increases and ephedrine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • epinephrine

              oxycodone increases and epinephrine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • epinephrine racemic

              oxycodone increases and epinephrine racemic decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • escitalopram

              oxycodone increases effects of escitalopram by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Opioids may enhance the serotonergic effects of SSRIs and increase risk for serotonergic syndrome.

            • esketamine intranasal

              esketamine intranasal, oxycodone. Either increases toxicity of the other by sedation. Modify Therapy/Monitor Closely.

            • eslicarbazepine acetate

              eslicarbazepine acetate will decrease the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • estazolam

              estazolam and oxycodone both increase sedation. Use Caution/Monitor.

            • ethanol

              oxycodone and ethanol both increase sedation. Use Caution/Monitor.

            • etomidate

              etomidate and oxycodone both increase sedation. Use Caution/Monitor.

            • etravirine

              etravirine decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • fedratinib

              fedratinib will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Adjust dose of drugs that are CYP3A4 substrates as necessary.

            • fenfluramine

              oxycodone increases and fenfluramine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • flibanserin

              oxycodone and flibanserin both increase sedation. Modify Therapy/Monitor Closely. Risk for sedation increased if flibanserin is coadministration with other CNS depressants.

            • fluphenazine

              oxycodone and fluphenazine both increase sedation. Use Caution/Monitor.

            • flurazepam

              flurazepam and oxycodone both increase sedation. Use Caution/Monitor.

            • fluvoxamine

              fluvoxamine and oxycodone both increase serotonin levels. Use Caution/Monitor.

            • formoterol

              oxycodone increases and formoterol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • fosphenytoin

              fosphenytoin decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • gabapentin

              gabapentin, oxycodone. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of CNS depressants can result in serious, life-threatening, and fatal respiratory depression. Use lowest dose possible and monitor for respiratory depression and sedation.

            • gabapentin enacarbil

              gabapentin enacarbil, oxycodone. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of CNS depressants can result in serious, life-threatening, and fatal respiratory depression. Use lowest dose possible and monitor for respiratory depression and sedation.

            • ganaxolone

              oxycodone and ganaxolone both increase sedation. Use Caution/Monitor.

            • haloperidol

              haloperidol will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

              oxycodone and haloperidol both increase sedation. Use Caution/Monitor.

            • hydromorphone

              hydromorphone and oxycodone both increase sedation. Use Caution/Monitor.

            • hydroxyzine

              hydroxyzine and oxycodone both increase sedation. Use Caution/Monitor.

            • iloperidone

              oxycodone and iloperidone both increase sedation. Use Caution/Monitor.

              iloperidone increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Iloperidone is a time-dependent CYP3A inhibitor and may lead to increased plasma levels of drugs predominantly eliminated by CYP3A4.

            • imatinib

              imatinib will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • imipramine

              oxycodone and imipramine both increase sedation. Use Caution/Monitor.

            • isoproterenol

              oxycodone increases and isoproterenol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • istradefylline

              istradefylline will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Istradefylline 40 mg/day increased peak levels and AUC of CYP3A4 substrates in clinical trials. This effect was not observed with istradefylline 20 mg/day. Consider dose reduction of sensitive CYP3A4 substrates.

            • itraconazole

              itraconazole increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • ketamine

              ketamine and oxycodone both increase sedation. Use Caution/Monitor.

            • ketoconazole

              ketoconazole increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • ketotifen, ophthalmic

              oxycodone and ketotifen, ophthalmic both increase sedation. Use Caution/Monitor.

            • lasmiditan

              lasmiditan, oxycodone. Either increases effects of the other by sedation. Use Caution/Monitor. Coadministration of lasmiditan and other CNS depressant drugs, including alcohol have not been evaluated in clinical studies. Lasmiditan may cause sedation, as well as other cognitive and/or neuropsychiatric adverse reactions.

            • lemborexant

              lemborexant, oxycodone. Either increases effects of the other by sedation. Modify Therapy/Monitor Closely. Dosage adjustment may be necessary if lemborexant is coadministered with other CNS depressants because of potentially additive effects.

            • lenacapavir

              lenacapavir will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Careful monitoring of therapeutic effects

            • letermovir

              letermovir increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • levalbuterol

              oxycodone increases and levalbuterol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • levoketoconazole

              levoketoconazole increases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Oxycodone dose reduction may be warranted when coadministered with strong CYP3A4 inhibitors.

            • levorphanol

              levorphanol and oxycodone both increase sedation. Use Caution/Monitor.

            • lisdexamfetamine

              oxycodone increases and lisdexamfetamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • lofepramine

              oxycodone and lofepramine both increase sedation. Use Caution/Monitor.

            • lofexidine

              oxycodone and lofexidine both increase sedation. Use Caution/Monitor.

            • loprazolam

              loprazolam and oxycodone both increase sedation. Use Caution/Monitor.

            • lorazepam

              lorazepam and oxycodone both increase sedation. Use Caution/Monitor.

            • lorlatinib

              lorlatinib will decrease the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • lormetazepam

              lormetazepam and oxycodone both increase sedation. Use Caution/Monitor.

            • loxapine

              oxycodone and loxapine both increase sedation. Use Caution/Monitor.

            • loxapine inhaled

              oxycodone and loxapine inhaled both increase sedation. Use Caution/Monitor.

            • lurasidone

              lurasidone, oxycodone. Either increases toxicity of the other by Other (see comment). Use Caution/Monitor. Comment: Potential for increased CNS depressant effects when used concurrently; monitor for increased adverse effects and toxicity.

            • maprotiline

              oxycodone and maprotiline both increase sedation. Use Caution/Monitor.

            • maraviroc

              maraviroc will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • marijuana

              marijuana will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

              oxycodone and marijuana both increase sedation. Use Caution/Monitor.

            • melatonin

              oxycodone and melatonin both increase sedation. Use Caution/Monitor.

            • meperidine

              meperidine and oxycodone both increase sedation. Use Caution/Monitor.

            • meprobamate

              oxycodone and meprobamate both increase sedation. Use Caution/Monitor.

            • metaproterenol

              oxycodone increases and metaproterenol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • metaxalone

              metaxalone and oxycodone both increase sedation. Use Caution/Monitor.

            • methadone

              methadone and oxycodone both increase sedation. Use Caution/Monitor.

            • methamphetamine

              oxycodone increases and methamphetamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • methocarbamol

              methocarbamol and oxycodone both increase sedation. Use Caution/Monitor.

            • methylenedioxymethamphetamine

              oxycodone increases and methylenedioxymethamphetamine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • midazolam

              midazolam and oxycodone both increase sedation. Use Caution/Monitor.

            • midazolam intranasal

              midazolam intranasal, oxycodone. Either increases toxicity of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Concomitant use of barbiturates, alcohol, or other CNS depressants may increase the risk of hypoventilation, airway obstruction, desaturation, or apnea and may contribute to profound and/or prolonged drug effect.

            • midodrine

              oxycodone increases and midodrine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • mifepristone

              mifepristone will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • mirtazapine

              oxycodone and mirtazapine both increase sedation. Use Caution/Monitor.

            • mitotane

              mitotane decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • modafinil

              oxycodone increases and modafinil decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • morphine

              morphine and oxycodone both increase sedation. Use Caution/Monitor.

            • motherwort

              oxycodone and motherwort both increase sedation. Use Caution/Monitor.

            • moxonidine

              oxycodone and moxonidine both increase sedation. Use Caution/Monitor.

            • nabilone

              oxycodone and nabilone both increase sedation. Use Caution/Monitor.

            • nafcillin

              nafcillin decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • nalbuphine

              nalbuphine and oxycodone both increase sedation. Use Caution/Monitor.

            • nevirapine

              nevirapine decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • nilotinib

              nilotinib will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • nirmatrelvir/ritonavir

              nirmatrelvir/ritonavir will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Careful monitoring of oxycodone therapeutic and adverse effects (including potentially fatal respiratory depression) recommended when coadministered. Reduce oxycodone dose if necessary.

            • norepinephrine

              oxycodone increases and norepinephrine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • nortriptyline

              oxycodone and nortriptyline both increase sedation. Use Caution/Monitor.

            • olanzapine

              oxycodone and olanzapine both increase sedation. Use Caution/Monitor.

            • oliceridine

              oliceridine, oxycodone. Either increases toxicity of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Profound sedation, respiratory depression, coma, and death may result if coadministered. Reserve concomitant prescribing of these drugs in patients for whom other treatment options are inadequate. Limit dosages and durations to the minimum required. Monitor closely for signs of respiratory depression and sedation.

            • opium tincture

              opium tincture and oxycodone both increase sedation. Use Caution/Monitor.

            • orphenadrine

              orphenadrine and oxycodone both increase sedation. Use Caution/Monitor.

            • oxazepam

              oxazepam and oxycodone both increase sedation. Use Caution/Monitor.

            • oxcarbazepine

              oxcarbazepine decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • oxymorphone

              oxycodone and oxymorphone both increase sedation. Use Caution/Monitor.

            • paliperidone

              oxycodone and paliperidone both increase sedation. Use Caution/Monitor.

            • pancuronium

              oxycodone increases effects of pancuronium by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Oxycodone may enhance the neuromuscular blocking action of true skeletal muscle relaxants and produce an increased degree of respiratory depression.

            • papaveretum

              oxycodone and papaveretum both increase sedation. Use Caution/Monitor.

            • papaverine

              oxycodone and papaverine both increase sedation. Use Caution/Monitor.

            • parecoxib

              parecoxib will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • paroxetine

              oxycodone increases effects of paroxetine by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Opioids may enhance the serotonergic effects of SSRIs and increase risk for serotonergic syndrome.

            • pegvisomant

              oxycodone decreases effects of pegvisomant by unknown mechanism. Use Caution/Monitor.

            • pentazocine

              oxycodone and pentazocine both increase sedation. Use Caution/Monitor.

            • pentobarbital

              pentobarbital and oxycodone both increase sedation. Use Caution/Monitor.

              pentobarbital decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • perampanel

              perampanel and oxycodone both decrease sedation. Use Caution/Monitor.

            • perphenazine

              perphenazine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

              oxycodone and perphenazine both increase sedation. Use Caution/Monitor.

            • phendimetrazine

              oxycodone increases and phendimetrazine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • phenobarbital

              phenobarbital and oxycodone both increase sedation. Use Caution/Monitor.

              phenobarbital decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • phentermine

              oxycodone increases and phentermine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • phenylephrine

              oxycodone increases and phenylephrine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • phenylephrine PO

              oxycodone increases and phenylephrine PO decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor. .

            • phenytoin

              phenytoin decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • pholcodine

              oxycodone and pholcodine both increase sedation. Use Caution/Monitor.

            • pimozide

              oxycodone and pimozide both increase sedation. Use Caution/Monitor.

            • pirbuterol

              oxycodone increases and pirbuterol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • pregabalin

              pregabalin, oxycodone. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Coadministration of CNS depressants can result in serious, life-threatening, and fatal respiratory depression. Use lowest dose possible and monitor for respiratory depression and sedation.

            • primidone

              primidone and oxycodone both increase sedation. Use Caution/Monitor.

              primidone decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • prochlorperazine

              oxycodone and prochlorperazine both increase sedation. Use Caution/Monitor.

            • promethazine

              promethazine and oxycodone both increase sedation. Use Caution/Monitor.

            • propafenone

              propafenone will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • propofol

              propofol and oxycodone both increase sedation. Use Caution/Monitor.

            • propylhexedrine

              oxycodone increases and propylhexedrine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • protriptyline

              oxycodone and protriptyline both increase sedation. Use Caution/Monitor.

            • quazepam

              quazepam and oxycodone both increase sedation. Use Caution/Monitor.

            • quetiapine

              oxycodone and quetiapine both increase sedation. Use Caution/Monitor.

            • quinacrine

              quinacrine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • quinidine

              quinidine decreases effects of oxycodone by decreasing metabolism. Use Caution/Monitor. Decreased conversion of hydrocodone to active metabolite morphine.

            • ramelteon

              oxycodone and ramelteon both increase sedation. Use Caution/Monitor.

            • ranolazine

              ranolazine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • remimazolam

              remimazolam, oxycodone. Either increases toxicity of the other by sedation. Modify Therapy/Monitor Closely. Coadministration may result in profound sedation, respiratory depression, coma, and/or death. Continuously monitor vital signs during sedation and recovery period if coadministered. Carefully titrate remimazolam dose if administered with opioid analgesics and/or sedative/hypnotics.

            • ribociclib

              ribociclib will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • rifabutin

              rifabutin decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • rifampin

              rifampin decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • rifapentine

              rifapentine decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • risperidone

              oxycodone and risperidone both increase sedation. Use Caution/Monitor.

            • rocuronium

              oxycodone increases effects of rocuronium by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Oxycodone may enhance the neuromuscular blocking action of true skeletal muscle relaxants and produce an increased degree of respiratory depression.

            • rucaparib

              rucaparib will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • salmeterol

              oxycodone increases and salmeterol decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • scullcap

              oxycodone and scullcap both increase sedation. Use Caution/Monitor.

            • secobarbital

              secobarbital and oxycodone both increase sedation. Use Caution/Monitor.

            • selegiline

              selegiline increases toxicity of oxycodone by unknown mechanism. Modify Therapy/Monitor Closely. Potential for increased CNS depression, drowsiness, dizziness or hypotension, so use with any MAOI should be cautious.

            • sertraline

              sertraline will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2B6 metabolism. Use Caution/Monitor.

              oxycodone increases effects of sertraline by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Opioids may enhance the serotonergic effects of SSRIs and increase risk for serotonergic syndrome.

            • sevoflurane

              sevoflurane and oxycodone both increase sedation. Use Caution/Monitor.

            • shepherd's purse

              oxycodone and shepherd's purse both increase sedation. Use Caution/Monitor.

            • St John's Wort

              St John's Wort decreases levels of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • stiripentol

              stiripentol, oxycodone. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Stiripentol is a CYP3A4 inhibitor and inducer. Monitor CYP3A4 substrates coadministered with stiripentol for increased or decreased effects. CYP3A4 substrates may require dosage adjustment.

              stiripentol, oxycodone. Either increases effects of the other by sedation. Use Caution/Monitor. Concomitant use stiripentol with other CNS depressants, including alcohol, may increase the risk of sedation and somnolence.

            • succinylcholine

              oxycodone increases effects of succinylcholine by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Oxycodone may enhance the neuromuscular blocking action of true skeletal muscle relaxants and produce an increased degree of respiratory depression.

            • sufentanil

              oxycodone and sufentanil both increase sedation. Use Caution/Monitor.

            • tapentadol

              oxycodone and tapentadol both increase sedation. Use Caution/Monitor.

            • tazemetostat

              tazemetostat will decrease the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

            • tecovirimat

              tecovirimat will decrease the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Tecovirimat is a weak CYP3A4 inducer. Monitor sensitive CYP3A4 substrates for effectiveness if coadministered.

            • temazepam

              temazepam and oxycodone both increase sedation. Use Caution/Monitor.

            • terbutaline

              oxycodone increases and terbutaline decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • thioridazine

              thioridazine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

              oxycodone and thioridazine both increase sedation. Use Caution/Monitor.

            • thiothixene

              oxycodone and thiothixene both increase sedation. Use Caution/Monitor.

            • tipranavir

              tipranavir will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • topiramate

              oxycodone and topiramate both increase sedation. Modify Therapy/Monitor Closely.

            • tramadol

              oxycodone and tramadol both increase sedation. Use Caution/Monitor.

            • trazodone

              oxycodone and trazodone both increase sedation. Use Caution/Monitor.

            • triazolam

              triazolam and oxycodone both increase sedation. Use Caution/Monitor.

            • triclofos

              triclofos and oxycodone both increase sedation. Use Caution/Monitor.

            • trifluoperazine

              oxycodone and trifluoperazine both increase sedation. Use Caution/Monitor.

            • trimipramine

              oxycodone and trimipramine both increase sedation. Use Caution/Monitor.

            • triprolidine

              triprolidine and oxycodone both increase sedation. Use Caution/Monitor.

            • vecuronium

              oxycodone increases effects of vecuronium by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Oxycodone may enhance the neuromuscular blocking action of true skeletal muscle relaxants and produce an increased degree of respiratory depression.

            • venlafaxine

              venlafaxine will increase the level or effect of oxycodone by affecting hepatic enzyme CYP2D6 metabolism. Use Caution/Monitor.

            • vilazodone

              oxycodone increases effects of vilazodone by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Opioids may enhance the serotonergic effects of SSRIs and increase risk for serotonergic syndrome.

            • xylometazoline

              oxycodone increases and xylometazoline decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • yohimbine

              oxycodone increases and yohimbine decreases sedation. Effect of interaction is not clear, use caution. Use Caution/Monitor.

            • ziconotide

              oxycodone and ziconotide both increase sedation. Use Caution/Monitor.

            • ziprasidone

              oxycodone and ziprasidone both increase sedation. Use Caution/Monitor.

            • zotepine

              oxycodone and zotepine both increase sedation. Use Caution/Monitor.

            Minor (21)

            • acetazolamide

              acetazolamide will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

            • amiodarone

              amiodarone decreases effects of oxycodone by decreasing metabolism. Minor/Significance Unknown. Decreased conversion of oxycodone to active metabolite morphine.

            • anastrozole

              anastrozole will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

            • brimonidine

              brimonidine increases effects of oxycodone by pharmacodynamic synergism. Minor/Significance Unknown. Increased CNS depression.

            • celecoxib

              celecoxib decreases effects of oxycodone by decreasing metabolism. Minor/Significance Unknown. Decreased conversion of oxycodone to active metabolite morphine.

            • chloroquine

              chloroquine decreases effects of oxycodone by decreasing metabolism. Minor/Significance Unknown. Decreased conversion of oxycodone to active metabolite morphine.

            • cyclophosphamide

              cyclophosphamide will increase the level or effect of oxycodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

            • dextroamphetamine

              dextroamphetamine increases effects of oxycodone by unspecified interaction mechanism. Minor/Significance Unknown.

            • diphenhydramine

              diphenhydramine decreases effects of oxycodone by decreasing metabolism. Minor/Significance Unknown. Decreased conversion of oxycodone to active metabolite morphine.

            • eucalyptus

              oxycodone and eucalyptus both increase sedation. Minor/Significance Unknown.

            • haloperidol

              haloperidol decreases effects of oxycodone by decreasing metabolism. Minor/Significance Unknown. Decreased conversion of oxycodone to active metabolite morphine.

            • imatinib

              imatinib decreases effects of oxycodone by decreasing metabolism. Minor/Significance Unknown. Decreased conversion of oxycodone to active metabolite morphine.

            • lidocaine

              lidocaine increases toxicity of oxycodone by pharmacodynamic synergism. Minor/Significance Unknown. Risk of increased CNS depression.

            • paroxetine

              paroxetine decreases effects of oxycodone by decreasing metabolism. Minor/Significance Unknown. Decreased conversion of oxycodone to active metabolite morphine.

            • perphenazine

              perphenazine decreases effects of oxycodone by decreasing metabolism. Minor/Significance Unknown. Decreased conversion of oxycodone to active metabolite morphine.

            • propafenone

              propafenone decreases effects of oxycodone by decreasing metabolism. Minor/Significance Unknown. Decreased conversion of oxycodone to active metabolite morphine.

            • quinacrine

              quinacrine decreases effects of oxycodone by decreasing metabolism. Minor/Significance Unknown. Decreased conversion of oxycodone to active metabolite morphine.

            • sage

              oxycodone and sage both increase sedation. Minor/Significance Unknown.

            • thioridazine

              thioridazine decreases effects of oxycodone by decreasing metabolism. Minor/Significance Unknown. Decreased conversion of oxycodone to active metabolite morphine.

            • venlafaxine

              venlafaxine decreases effects of oxycodone by decreasing metabolism. Minor/Significance Unknown. Decreased conversion of oxycodone to active metabolite morphine.

            • ziconotide

              ziconotide, oxycodone. Mechanism: unspecified interaction mechanism. Minor/Significance Unknown. Additive decreased GI motility. Additive analgesia. Ziconotide does NOT potentiate opioid induced respiratory depression.

            Previous
            Next:

            Adverse Effects

            1-10%

            Nausea (7-8%)

            Vomiting (2-5%)

            Headache (3-4%)

            Constipation (3%)

            Abdominal pain (3%)

            Back pain (3%)

            Anxiety (1-3%)

            Pruritus (2%)

            Insomnia (1-2%)

            Postmarketing Reports

            Gastrointestinal disorders: Abdominal pain, constipation, diarrhea, nausea, and vomiting

            General disorders and administration site conditions: Drug withdrawal syndrome, fatigue, pain, malaise, and drug ineffective

            Injury, poisoning, and procedural complications: Inadequate analgesia

            Neoplasms benign, malignant, and unspecified (including cysts and polyps): Malignant neoplasm progression

            Nervous system disorders: Dizziness, headache, tremor, and somnolence

            Psychiatric disorders: Restlessness, confusional state, and anxiety

            Respiratory, thoracic, and mediastinal disorders: Dyspnea

            Skin and subcutaneous tissue disorders: Hyperhidrosis and pruritus

            Previous
            Next:

            Warnings

            Black Box Warnings

            Exposes users to risks of addiction, abuse and misuse, which can lead to overdose and death; assess each patient’s risk before prescribing and monitor regularly for development of these behaviors and conditions

            Serious, life-threatening, or fatal respiratory depression may occur; monitor closely, especially upon initiation or following a dose increase

            Instruct patients to swallow extended-release tablets whole to avoid exposure to a potentially fatal dose of oxycodone

            Accidental ingestion, especially in children, can result in a fatal overdose of oxycodone

            Prolonged use during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated; if opioid use is required for a prolonged period in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available

            Initiation of CYP3A4 inhibitors (or discontinuation of CYP3A4 inducers) can result in a fatal overdose of oxycodone

            Contraindications

            Significant respiratory depression

            Acute or severe bronchial asthma

            Known or suspected paralytic ileus and GI obstruction

            Known hypersensitivity to oxycodone or naloxone

            Moderate-to-severe hepatic impairment

            Cautions

            Cases of serotonin syndrome, a potentially life-threatening condition, reported with concomitant use of serotonergic drugs; this may occur within the recommended dosage range; the onset of symptoms generally occur within several hours to a few days of concomitant use, but may occur later than that; discontinue therapy immediately if serotonin syndrome is suspected

            While serious, life-threatening, or fatal respiratory depression can occur at any time during therapy, risk is greatest during initiation of therapy or following dosage increase; monitor patients closely for respiratory depression, especially within first 24 to 72 hr of initiating therapy with and following dosage increases; accidental ingestion of even one dose, especially by children, can result in respiratory depression and death due to overdose of opioid

            Deaths have occurred in nursing infants exposed to high levels of opioid in breast milk because mothers were ultra-rapid metabolizers of opioid

            Profound sedation, respiratory depression, coma, and death may result from concomitant administration with benzodiazepines or other CNS depressants (e.g., non-benzodiazepine sedatives/hypnotics, anxiolytics, tranquilizers, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol); because of these risks, reserve concomitant prescribing of these drugs for use in patients for whom alternative treatment options are inadequate

            Use in patients with acute or severe bronchial asthma in an unmonitored setting or in absence of resuscitative equipment is contraindicated; patients with significant chronic obstructive pulmonary disease or cor pulmonale, and with substantially decreased respiratory reserve, hypoxia, hypercapnia, or pre-existing respiratory depression are at increased risk of decreased respiratory drive including apnea, even at recommended dosages

            Monoamine oxidase inhibitors (MAOIs) may potentiate effects of opioid, opioid’s active metabolite, including respiratory depression, coma, and confusion; therapy should not be administered within 14 days of initiating or stopping MAOIs

            Cases of adrenal insufficiency reported with opioid use, more often following greater than one month of use; symptoms may include nausea, vomiting, anorexia, fatigue, weakness, dizziness, and low blood pressure; if adrenal insufficiency is diagnosed, treat with physiologic replacement doses of corticosteroids; wean patient off of opioid to allow adrenal function to recover and continue corticosteroid treatment until adrenal function recovers; other opioids may be tried as some cases reported use of a different opioid without recurrence of adrenal insufficiency

            Use caution when selecting dosage for an elderly patient, usually starting at low end of dosing range, reflecting greater frequency of decreased hepatic, renal, or cardiac function and of concomitant disease or other drug therapy; because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and may be useful to monitor renal function

            Opioid pharmacokinetics may be altered in patients with renal failure; clearance may be decreased and metabolites may accumulate much higher plasma levels in patients with renal failure as compared to patients with normal renal function; start with a lower than normal dosage or with longer dosing intervals and titrate slowly while monitoring for signs of respiratory depression, sedation, and hypotension

            Oxycodone exposes users to the risks of addiction, abuse, and misuse; the tablet is designed to deliver oxycodone over an extended period and contains a larger amount of oxycodone

            Do not ingest alcohol or OTC medications containing alcohol while taking opioid analgesics

            Interactions with CNS depressants: Concomitant use may cause profound sedation, respiratory depression, and death; if coadministration is required, consider dose reduction of 1 or both drugs

            Elderly, cachectic, debilitated patients, and those with chronic pulmonary disease: Monitor closely because of increased risk for life-threatening respiratory depression

            May cause severe hypotension, including orthostatic hypotension and syncope; this risk is increased in patients whose ability to maintain blood pressure has been compromised by reduced blood volume or coadministration with certain CNS depressants (eg, phenothiazines, general anesthetics)

            Patients with head injury or increased intracranial pressure: Monitor for sedation and respiratory depression; avoid use in patients with impaired consciousness or coma susceptible to intracranial effects of carbon dioxoide retention

            Symptoms consistent with opioid withdrawal occurred in some patients in the clinical trials; monitor patients for symptoms of withdrawal during treatment

            Concomitant use of CYP3A4 inhibitors may increase opioid effects

            CYP3A4 inducers may increase oxycodone clearance, leading to decreased oxycodone plasma concentrations, decreased efficacy, or abstinence syndrome in physically dependent patients

            May cause spasm of the sphincter of Oddi; monitor patients with biliary tract disease, including acute pancreatitis, for worsening symptoms (also see Contraindications)

            Opioids may cause increases in the serum amylase

            May aggravate convulsions in patients with convulsive disorders, and may induce or aggravate seizures in some clinical settings

            May impair the mental or physical abilities needed to perform potentially hazardous activities

            Avoid the use of mixed agonist/antagonist (ie, pentazocine, nalbuphine, butorphanol) or partial agonist (buprenorphine) analgesics in patients who have received or are receiving a course of therapy with a full opioid agonist analgesic; mixed agonist/antagonists may reduce the analgesic effect and/or may precipitate withdrawal symptoms

            Do not abruptly discontinue; gradually taper the dose to avoid withdrawal symptoms

            Prolonged use during pregnancy can result in withdrawal symptoms in the newborn

            Previous
            Next:

            Pregnancy & Lactation

            Pregnancy

            Prolonged use of opioid analgesics during pregnancy can cause neonatal opioid withdrawal syndrome; there are no available data in pregnant women to inform a drug associated risk for major birth defects and miscarriage; published studies with morphine use during pregnancy have not reported a clear association with morphine and major birth defects

            Prolonged use of opioid analgesics during pregnancy for medical or nonmedical purposes can result in physical dependence in the neonate and neonatal opioid withdrawal syndrome shortly after birth; the onset, duration, and severity of neonatal opioid withdrawal syndrome vary based on specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination of drug by newborn; observe newborns for symptoms of neonatal opioid withdrawal syndrome and manage accordingly

            Severe fetal bradycardia reported when administered during labor; naloxone may reverse these effects; although there are no reports of fetal bradycardia earlier in pregnancy, it is possible it may occur; drug should be used in pregnancy only if clearly needed, if potential benefit outweighs risk to fetus, and if appropriate measures such as fetal monitoring are taken to detect and manage potential adverse effect on fetus

            Labor or delivery

            • Opioids cross placenta and may produce respiratory depression and psycho-physiologic effects in neonates; an opioid antagonist, such as naloxone, must be available for reversal of opioid induced respiratory depression in neonate; drug is not recommended for use in women during and immediately prior to labor, when use of shorter-acting analgesics or other analgesic techniques are more appropriate; opioid analgesics can prolong labor through actions that temporarily reduce strength, duration, and frequency of uterine contractions; however, this effect is not consistent and may be offset by an increased rate of cervical dilatation, which tends to shorten labor; monitor neonates exposed to opioid analgesics during labor for signs of excess sedation and respiratory depression

            Fertility

            • Due to effects of androgen deficiency, chronic use of opioids may cause reduced fertility in females and males of reproductive potential; it is not known whether effects on fertility are reversible

            Lactation

            Drug is present in breast milk; published lactation studies report variable concentrations of drug in breast milk with administration of immediate-release formulation to nursing mothers in early postpartum period

            The developmental and health benefits of breastfeeding should be considered along with mother’s clinical need for therapy; capsules and any potential adverse effects on breastfed infant from therapy or from underlying maternal condition

            Monitor infants exposed to drug through breast milk for excess sedation and respiratory depression; withdrawal symptoms can occur in breastfed infants when maternal administration of an opioid analgesic is stopped, or when breast- feeding is stopped

            Do not initiate oxycodone/naloxone in breastfeeding women because of the possibility of sedation or respiratory depression in an infant

            Withdrawal signs can occur in breast-fed infants when maternal administration of an opioid analgesic is stopped or when breastfeeding is stopped; naloxone may precipitate opioid withdrawal in a breast-fed infant whose mother received opioid analgesics

            Pregnancy Categories

            A: Generally acceptable. Controlled studies in pregnant women show no evidence of fetal risk.

            B: May be acceptable. Either animal studies show no risk but human studies not available or animal studies showed minor risks and human studies done and showed no risk.

            C: Use with caution if benefits outweigh risks. Animal studies show risk and human studies not available or neither animal nor human studies done.

            D: Use in LIFE-THREATENING emergencies when no safer drug available. Positive evidence of human fetal risk.

            X: Do not use in pregnancy. Risks involved outweigh potential benefits. Safer alternatives exist.

            NA: Information not available.

            Previous
            Next:

            Pharmacology

            Mechanism of Action

            Oxycodone: Opioid agonist; relatively selective for the mu receptor, but it can bind to other opioid receptors at higher doses; inhibits ascending pain pathways, thus altering response to pain; produces analgesia, respiratory depression, and sedation

            Naloxone: Antagonist of mu, kappa, and delta opioid receptors, with greatest affinity for the mu receptor; produces opioid withdrawal signs and symptoms in individuals physically dependent on full opioid agonists when administered parenterally

            Absorption

            Bioavailability: 60-87% (oxycodone); 31% (naloxone)

            Single dose

            • Peak plasma time: 3-3.5 hr (oxycodone); 1.5-5 hr (naloxone)
            • Peak plasma concentration: 12.1-40.9 ng/mL (oxycodone); 0.306-0.845 ng/mL (naloxone)
            • AUC: 130-506 ng•hr/mL (oxycodone); 0.136-0.833 ng•hr/mL (naloxone)

            Multiple dose

            • Peak plasma time: 1.75-2 hr (oxycodone); 3.75-5 hr (naloxone)
            • Peak plasma concentration: 15-57 ng/mL (oxycodone); 0.0725-0.217 ng/mL (naloxone)
            • AUC: 129-507 ng•hr/mL (oxycodone); 0.416-1.55 ng•hr/mL (naloxone)

            Distribution

            Protein bound: <24% (oxycodone); <60% (naloxone)

            Vd: 245 L (oxycodone); 378 L (naloxone)

            Metabolism

            Oxycodone

            • Primarily metabolism by CYP3A4/5 and CYP2D6
            • Metabolites: Noroxycodone, oxymorphone, and noroxymorphone

            Naloxone

            • Primarily metabolized by UGT1A8 and UGT2B7
            • Metabolites: 6β-naloxol, naloxone-3β-glucuronide and 6 β-naloxol-3 β-glucuronide

            Elimination

            Half-life: 3.9-5.3 hr (oxycodone); 4.1-17.2 hr (naloxone)

            Total plasma clearance: 47.8 L/hr (oxycodone); 217 L/hr (naloxone)

            Renal clearance: 3.66-4.37 L/hr (oxycodone); 7.85-31.9 L/hr (naloxone)

            Excretion: 72% urine; also excreted in feces (oxycodone)

            Previous
            Next:

            Images

            No images available for this drug.
            Previous
            Next:

            Patient Handout

            A Patient Handout is not currently available for this monograph.
            Previous
            Next:

            Formulary

            FormularyPatient Discounts

            Adding plans allows you to compare formulary status to other drugs in the same class.

            To view formulary information first create a list of plans. Your list will be saved and can be edited at any time.

            Adding plans allows you to:

            • View the formulary and any restrictions for each plan.
            • Manage and view all your plans together – even plans in different states.
            • Compare formulary status to other drugs in the same class.
            • Access your plan list on any device – mobile or desktop.

            The above information is provided for general informational and educational purposes only. Individual plans may vary and formulary information changes. Contact the applicable plan provider for the most current information.

            Tier Description
            1 This drug is available at the lowest co-pay. Most commonly, these are generic drugs.
            2 This drug is available at a middle level co-pay. Most commonly, these are "preferred" (on formulary) brand drugs.
            3 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs.
            4 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs or specialty prescription products.
            5 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs or specialty prescription products.
            6 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs or specialty prescription products.
            NC NOT COVERED – Drugs that are not covered by the plan.
            Code Definition
            PA Prior Authorization
            Drugs that require prior authorization. This restriction requires that specific clinical criteria be met prior to the approval of the prescription.
            QL Quantity Limits
            Drugs that have quantity limits associated with each prescription. This restriction typically limits the quantity of the drug that will be covered.
            ST Step Therapy
            Drugs that have step therapy associated with each prescription. This restriction typically requires that certain criteria be met prior to approval for the prescription.
            OR Other Restrictions
            Drugs that have restrictions other than prior authorization, quantity limits, and step therapy associated with each prescription.
            Additional Offers
            Email to Patient

            From:

            To:

            The recipient will receive more details and instructions to access this offer.

            By clicking send, you acknowledge that you have permission to email the recipient with this information.

            Email Forms to Patient

            From:

            To:

            The recipient will receive more details and instructions to access this offer.

            By clicking send, you acknowledge that you have permission to email the recipient with this information.

            Previous
            Medscape prescription drug monographs are based on FDA-approved labeling information, unless otherwise noted, combined with additional data derived from primary medical literature.