empagliflozin/linagliptin/metformin (Rx)

Brand and Other Names:Trijardy XR

Dosing & Uses

AdultPediatric

Dosage Forms & Strengths

empagliflozin/linagliptin/metformin

tablet

  • 5mg/2.5mg/1000mg
  • 12.5mg/2.5mg/1000mg
  • 10mg/5mg/1000mg
  • 25mg/5mg/1000mg

Type 2 Diabetes Mellitus

Indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus (T2DM)

Empagliflozin is also indicated to reduce the risk of cardiovascular death in adults with T2DM and established cardiovascular disease

Individualize starting dose based on the patient’s current regimen

Monitor effectiveness and tolerability, and adjust dosing as appropriate

Maximum recommended daily dose of empagliflozin 25 mg/linagliptin 5 mg/metformin 2000 mg

Patients on metformin with or without linagliptin

  • Switch to Trijardy XR containing a similar total daily dose (TDD) of metformin, a TDD of empagliflozin 10 mg, and linagliptin 5 mg
  • Patients on metformin and any regimen containing empagliflozin, with or without linagliptin H4
  • Switch to Trijardy XR containing a similar TDD of metformin, the same TDD of empagliflozin, and linagliptin 5 mg

Dosage regimen with morning meal

  • For metformin TDD 1000 mg: Take Trijardy XR 10 mg/5 mg/1000 mg OR 25 mg/5 mg/1000 mg PO as a single tablet once daily
  • For metformin TDD 2000 mg: Take Trijardy XR 5 mg/2.5 mg/1000 mg OR 12.5 mg/2.5 mg/1000 mg PO as 2 tablets together once daily

Dosage Modifications

Renal impairment

  • Mild (eGFR ≥45 mL/min/1.73 m2): No dosage adjustment necessary
  • Moderate-to-severe (eGFR <45 mL/min/1.73 m2): Should not be initiated or continued
  • Severe renal impairment (eGFR <30 mL/min/1.73 m2), end-stage renal disease (ESRD), or patients on dialysis: Contraindicated

Hepatic impairment

  • Not recommended; use of metformin in patients with hepatic impairment has been associated with some cases of lactic acidosis

Discontinuation for iodinated contrast imaging procedures

  • Discontinue treatment at the time of, or before, an iodinated contrast imaging procedure in patients with an eGFR <60 mL/min/1.73 m2; in patients with a history of liver disease, alcoholism, or heart failure; or in patients who will be administered intra-arterial iodinated contrast
  • Reevaluate eGFR 48 hr after the imaging procedure; restart Trijardy XR if renal function is stable

Dosing Considerations

Prior to initiating treatment

  • Assess renal function and periodically thereafter
  • In patients with volume depletion, correct this condition

Limitations of use

  • Not recommended for patients with type 1 diabetes or for treatment of diabetic ketoacidosis
  • Not studied in patients with a history of pancreatitis; it is unknown whether patients with a history of pancreatitis are at an increased risk for developing pancreatitis while using Trijardy XR

<18 years: Safety and efficacy not established

Next:

Interactions

Interaction Checker

and empagliflozin/linagliptin/metformin

No Results

     activity indicator 
    No Interactions Found
    Interactions Found

    Contraindicated

      Serious - Use Alternative

        Significant - Monitor Closely

          Minor

            All Interactions Sort By:
             activity indicator 

            Contraindicated (0)

              Serious - Use Alternative (27)

              • amobarbital

                amobarbital will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.

              • apalutamide

                apalutamide will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.

              • benazepril

                linagliptin increases toxicity of benazepril by Mechanism: unspecified interaction mechanism. Avoid or Use Alternate Drug. Increased risk for adverse/toxic effects, specifically, increased risk of angioedema.

              • contrast media (iodinated)

                contrast media (iodinated) increases levels of metformin by decreasing renal clearance. Contraindicated. Acute renal failure or lactic acidosis may result. D/c metformin 48 hr before and after imaging study.

              • dabrafenib

                dabrafenib will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.

              • ethanol

                ethanol increases toxicity of metformin by Other (see comment). Contraindicated. Comment: Excessive EtOH consumption may alter glycemic control. Some sulfonylureas may produce a disulfiram like rxn; alcohol may potentiate the risk of lactic acidosis.

              • fexinidazole

                fexinidazole will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Fexinidazole inhibits CYP3A4. Coadministration may increase risk for adverse effects of CYP3A4 substrates.

              • idelalisib

                idelalisib will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Idelalisib is a strong CYP3A inhibitor; avoid coadministration with sensitive CYP3A substrates

              • ioversol

                ioversol increases levels of metformin by decreasing renal clearance. Contraindicated. Acute renal failure or lactic acidosis may result. D/c metformin 48 hr before and after imaging study.

              • ivosidenib

                ivosidenib will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of sensitive CYP3A4 substrates with ivosidenib or replace with alternative therapies. If coadministration is unavoidable, monitor patients for loss of therapeutic effect of these drugs.

              • lasmiditan

                lasmiditan increases levels of linagliptin by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug.

              • lorlatinib

                lorlatinib will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.

              • methylene blue

                methylene blue will increase the level or effect of metformin by unspecified interaction mechanism. Avoid or Use Alternate Drug.

              • pacritinib

                pacritinib will increase the level or effect of metformin by Other (see comment). Avoid or Use Alternate Drug. Concomitant administration of pacritinib (OCT1 inhibitor) with OCT1 substrates may increase the plasma concentrations of these substrates.

              • ranolazine

                ranolazine will increase the level or effect of metformin by decreasing elimination. Avoid or Use Alternate Drug. Limit metformin dose to 1700 mg/day when used together with ranolazine 1000 mg twice daily; monitor closelly for signs or symptoms of metformin toxicity

              • risdiplam

                risdiplam will increase the level or effect of metformin by decreasing elimination. Avoid or Use Alternate Drug. Risdiplam inhibits MATE1 and MATE2-K. If unable to avoid coadministration with MATE substrates, consider dosage reduction of MATE substrate.

              • secobarbital

                secobarbital will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.

              • selegiline

                selegiline will increase the level or effect of metformin by unspecified interaction mechanism. Avoid or Use Alternate Drug.

              • selegiline transdermal

                selegiline transdermal will increase the level or effect of metformin by unspecified interaction mechanism. Avoid or Use Alternate Drug.

              • sotorasib

                sotorasib will decrease the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug. If use is unavoidable, refer to the prescribing information of the P-gp substrate for dosage modifications.

              • tafenoquine

                tafenoquine will increase the level or effect of metformin by Other (see comment). Avoid or Use Alternate Drug. Tafenoquine inhibits organic cation transporter-2 (OCT2) and multidrug and toxin extrusion (MATE) transporters in vitro. Avoid coadministration with OCT2 or MATE substrates. If coadministration cannot be avoided, monitor for substrate-related toxicities and consider dosage reduction if needed based on product labeling of the coadministered drug.

              • tedizolid

                tedizolid will increase the level or effect of metformin by unspecified interaction mechanism. Avoid or Use Alternate Drug.

              • tepotinib

                tepotinib will increase the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug. If concomitant use unavoidable, reduce the P-gp substrate dosage if recommended in its approved product labeling.

              • tipranavir

                tipranavir will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.

              • tranylcypromine

                tranylcypromine will increase the level or effect of metformin by unspecified interaction mechanism. Avoid or Use Alternate Drug.

              • trilaciclib

                trilaciclib will decrease the level or effect of metformin by Other (see comment). Avoid or Use Alternate Drug. Avoid coadministration of trilaciclib (OCT2, MATE1, and MATE-2K inhibitor) with substrates where minimal increased concentration in kidney or blood may lead to serious or life-threatening toxicities.

              • tucatinib

                tucatinib will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid concomitant use of tucatinib with CYP3A substrates, where minimal concentration changes may lead to serious or life-threatening toxicities. If unavoidable, reduce CYP3A substrate dose according to product labeling.

              Monitor Closely (259)

              • acetazolamide

                acetazolamide increases toxicity of metformin by Other (see comment). Use Caution/Monitor. Comment: Decreases serum bicarbonate and induce non-anion gap, hyperchloremic metabolic acidosis.

              • albiglutide

                albiglutide, metformin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Concurrent use may increase risk of hypoglycemia; monitor glucose levels.

              • amiloride

                empagliflozin, amiloride. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

              • amiodarone

                amiodarone will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Use Caution/Monitor.

              • amlodipine

                amlodipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • aprepitant

                aprepitant will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • aripiprazole

                aripiprazole, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.

              • armodafinil

                armodafinil will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • asenapine

                asenapine, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.

              • atazanavir

                atazanavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

                atazanavir decreases effects of linagliptin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

                atazanavir will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

              • benazepril

                benazepril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.

              • bendroflumethiazide

                empagliflozin, bendroflumethiazide. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

              • berotralstat

                berotralstat will increase the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Monitor or titrate P-gp substrate dose if coadministered.

              • benzphetamine

                benzphetamine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • betamethasone

                betamethasone decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • bexarotene

                bexarotene will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • bictegravir

                bictegravir will increase the level or effect of metformin by decreasing renal clearance. Modify Therapy/Monitor Closely. Bictegravir inhibits organic cation transporter 2 (OCT2) and multidrug and toxin extrusion transporter 1 (MATE1) in vitro. Coadministration with OCT2 and MATE1 substrates may increase their plasma concentrations. Metformin dose reduction may be required.

              • bitter melon

                bitter melon increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Risk of hypoglycemia.

              • bosentan

                bosentan will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer.

              • brexpiprazole

                brexpiprazole decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • bumetanide

                empagliflozin, bumetanide. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

                bumetanide decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • bupropion

                bupropion increases levels of metformin by Other (see comment). Use Caution/Monitor. Comment: Bupropion may inhibit OCT2 mediated renal excretion of metformin.

              • chlorothiazide

                empagliflozin, chlorothiazide. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

              • calcitriol

                calcitriol will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • captopril

                captopril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.

                linagliptin increases toxicity of captopril by Mechanism: unspecified interaction mechanism. Use Caution/Monitor. Increased adverse/toxic effects, specifically, increased risk of angioedema.

              • carbamazepine

                carbamazepine will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer.

                carbamazepine will decrease the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a P-gp inducer.

              • cariprazine

                cariprazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • cenobamate

                cenobamate will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Increase dose of CYP3A4 substrate, as needed, when coadministered with cenobamate.

              • cephalexin

                cephalexin increases toxicity of metformin by decreasing renal clearance. Use Caution/Monitor. particularly in patients who may have other risk factors for metformin toxicity. .

              • ceritinib

                ceritinib decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

                ceritinib will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

              • chlorpromazine

                chlorpromazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • chlorpropamide

                chlorpropamide, linagliptin. Other (see comment). Use Caution/Monitor. Comment: When linagliptin is used in combination with sulfonylureas, a lower dose of the sulfonylurea may be required to reduce risk of hypoglycemia.

                empagliflozin, chlorpropamide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

              • chlorthalidone

                empagliflozin, chlorthalidone. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

              • cimetidine

                cimetidine will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Use Caution/Monitor.

              • cinnamon

                cinnamon increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Potential for hypoglycemia.

              • ciprofloxacin

                ciprofloxacin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Hyper and hypoglycemia have been reported in patients treated concomitantly with quinolones and antidiabetic agents. Careful monitoring of blood glucose is recommended.

              • citalopram

                citalopram increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.

              • clevidipine

                clevidipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • clobazam

                clobazam will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • clozapine

                clozapine, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.

              • colchicine

                colchicine will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • colesevelam

                colesevelam increases levels of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • conjugated estrogens

                conjugated estrogens decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • corticotropin

                corticotropin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • dabrafenib

                dabrafenib decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • dalfampridine

                metformin, dalfampridine. Either increases levels of the other by Other (see comment). Use Caution/Monitor. Comment: Metformin and dalfampridine are organic cation transporter 2 (OCT2) substrates; both drugs may compete for renal tubular uptake and could potentially increase systemic exposure of either drug when administered concomitantly.

              • darunavir

                darunavir will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

                darunavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

                darunavir decreases effects of linagliptin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

              • deferasirox

                deferasirox will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • desogestrel

                desogestrel decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • diatrizoate

                diatrizoate increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .

              • diatrizoate meglumine/diatrizoate sodium

                diatrizoate meglumine/diatrizoate sodium increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .

              • diazoxide

                diazoxide decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • dichlorphenamide

                dichlorphenamide, metformin. Either increases toxicity of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Both drugs can cause metabolic acidosis.

              • dienogest/estradiol valerate

                dienogest/estradiol valerate decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • diethylpropion

                diethylpropion decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • digoxin

                digoxin, metformin. Either increases levels of the other by basic (cationic) drug competition for renal tubular clearance. Use Caution/Monitor. Measure serum digoxin concentrations before initiating metformin. Monitor patients who take both metformin and digoxin for possible digoxin toxicity and lactic acidosis. Reduce the digoxin and/or metformin dose as necessary.

              • diltiazem

                diltiazem decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • dofetilide

                dofetilide will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Use Caution/Monitor.

              • dolutegravir

                dolutegravir will increase the level or effect of metformin by decreasing renal clearance. Modify Therapy/Monitor Closely. Dolutegravir inhibits the renal organic cation transporter, OCT2; when used with metformin, limit total daily dose of metformin to 1,000 mg either when starting metformin or dolutegravir; when stopping dolutegravir, adjustment of metformin dose may be necessary; monitor blood glucose when initiating concomitant use and after withdrawal of dolutegravir

              • drospirenone

                drospirenone decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • dulaglutide

                dulaglutide, linagliptin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                dulaglutide, metformin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                dulaglutide, empagliflozin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

              • efavirenz

                efavirenz will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer.

                efavirenz will decrease the level or effect of linagliptin by Other (see comment). Use Caution/Monitor. Reports of hyperglycemia due to insulin resistance with protease inhibitors.

              • ethacrynic acid

                empagliflozin, ethacrynic acid. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

              • enalapril

                enalapril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.

              • elagolix

                elagolix will increase the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor.

                elagolix decreases levels of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Elagolix is a weak-to-moderate CYP3A4 inducer. Monitor CYP3A substrates if coadministered. Consider increasing CYP3A substrate dose if needed.

              • eliglustat

                eliglustat increases levels of linagliptin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Monitor therapeutic drug concentrations, as indicated, or consider reducing the dosage of the P-gp substrate and titrate to clinical effect.

              • encorafenib

                encorafenib, linagliptin. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Encorafenib both inhibits and induces CYP3A4 at clinically relevant plasma concentrations. Coadministration of encorafenib with sensitive CYP3A4 substrates may result in increased toxicity or decreased efficacy of these agents.

              • entecavir

                entecavir, metformin. Either increases levels of the other by Other (see comment). Use Caution/Monitor. Comment: Coadministration of entecavir with metformin may increase the risk of lactic acidosis.

              • enzalutamide

                enzalutamide will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • erdafitinib

                metformin increases levels of erdafitinib by decreasing renal clearance. Modify Therapy/Monitor Closely. Consider alternatives that are not OCT2 substrates or consider reducing the dose of OCT2 substrates based on tolerability.

              • escitalopram

                escitalopram increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.

              • eslicarbazepine acetate

                eslicarbazepine acetate will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer.

              • estradiol

                estradiol decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • estrogens conjugated synthetic

                estrogens conjugated synthetic will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

                estrogens conjugated synthetic decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • estropipate

                estropipate decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • etravirine

                etravirine will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

              • ethacrynic acid

                ethacrynic acid decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • ethinylestradiol

                ethinylestradiol decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • ethiodized oil

                ethiodized oil increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .

              • etonogestrel

                etonogestrel decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • everolimus

                everolimus decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • exenatide injectable solution

                exenatide injectable solution, metformin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Concurrent use may increase risk of hypoglycemia; monitor glucose levels.

              • exenatide injectable suspension

                exenatide injectable suspension, metformin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Concurrent use may increase risk of hypoglycemia; monitor glucose levels.

              • fedratinib

                fedratinib will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Adjust dose of drugs that are CYP3A4 substrates as necessary.

              • felbamate

                felbamate will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • felodipine

                felodipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • fleroxacin

                fleroxacin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Quinolone antibiotic administration may result in hyper- or hypoglycemia. Gatifloxacin is most likely to produce dysglycemia; moxifloxacin is least likely.

              • fluoxetine

                fluoxetine increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.

              • fluphenazine

                fluphenazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • fluvoxamine

                fluvoxamine increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.

              • fosamprenavir

                fosamprenavir decreases effects of linagliptin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

                fosamprenavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

              • fosaprepitant

                fosaprepitant will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • fosinopril

                fosinopril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.

              • fosphenytoin

                fosphenytoin will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer.

                fosphenytoin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • furosemide

                empagliflozin, furosemide. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

              • gemifloxacin

                gemifloxacin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Quinolone antibiotic administration may result in hyper- or hypoglycemia. Gatifloxacin is most likely to produce dysglycemia; moxifloxacin is least likely.

              • glecaprevir/pibrentasvir

                glecaprevir/pibrentasvir will increase the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor.

              • glimepiride

                empagliflozin, glimepiride. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

                glimepiride, linagliptin. Other (see comment). Use Caution/Monitor. Comment: When linagliptin is used in combination with sulfonylureas, a lower dose of the sulfonylurea may be required to reduce risk of hypoglycemia.

              • glipizide

                empagliflozin, glipizide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

                glipizide, linagliptin. Other (see comment). Use Caution/Monitor. Comment: When linagliptin is used in combination with sulfonylureas, a lower dose of the sulfonylurea may be required to reduce risk of hypoglycemia.

              • glucagon intranasal

                glucagon intranasal decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • glyburide

                empagliflozin, glyburide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

              • glyburide

                glyburide, linagliptin. Other (see comment). Use Caution/Monitor. Comment: When linagliptin is used in combination with sulfonylureas, a lower dose of the sulfonylurea may be required to reduce risk of hypoglycemia.

              • glycopyrrolate

                glycopyrrolate increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. May require a dose reduction.

              • goserelin

                goserelin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • griseofulvin

                griseofulvin will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • histrelin

                histrelin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • hydrochlorothiazide

                empagliflozin, hydrochlorothiazide. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

              • hydrocortisone

                hydrocortisone will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • hydroxyprogesterone caproate (DSC)

                hydroxyprogesterone caproate (DSC) decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • iloperidone

                iloperidone, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.

              • imidapril

                imidapril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.

              • indapamide

                empagliflozin, indapamide. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

              • indinavir

                indinavir will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

                indinavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

                indinavir decreases effects of linagliptin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

              • insulin aspart

                empagliflozin, insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

                metformin, insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                linagliptin, insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

              • insulin aspart protamine/insulin aspart

                empagliflozin, insulin aspart protamine/insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                metformin, insulin aspart protamine/insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                linagliptin, insulin aspart protamine/insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

              • insulin degludec

                metformin, insulin degludec. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                linagliptin, insulin degludec. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                empagliflozin, insulin degludec. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

              • insulin degludec/insulin aspart

                linagliptin, insulin degludec/insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                empagliflozin, insulin degludec/insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

                metformin, insulin degludec/insulin aspart. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

              • insulin detemir

                empagliflozin, insulin detemir. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

                metformin, insulin detemir. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                linagliptin, insulin detemir. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

              • insulin glargine

                metformin, insulin glargine. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                linagliptin, insulin glargine. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                empagliflozin, insulin glargine. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

              • insulin glulisine

                metformin, insulin glulisine. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                linagliptin, insulin glulisine. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                empagliflozin, insulin glulisine. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

              • insulin inhaled

                empagliflozin, insulin inhaled. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

                metformin, insulin inhaled. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                linagliptin, insulin inhaled. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

              • insulin isophane human/insulin regular human

                empagliflozin, insulin isophane human/insulin regular human. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                metformin, insulin isophane human/insulin regular human. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                linagliptin, insulin isophane human/insulin regular human. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

              • insulin lispro

                empagliflozin, insulin lispro. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

                metformin, insulin lispro. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                linagliptin, insulin lispro. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

              • insulin lispro protamine/insulin lispro

                empagliflozin, insulin lispro protamine/insulin lispro. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                metformin, insulin lispro protamine/insulin lispro. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                linagliptin, insulin lispro protamine/insulin lispro. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

              • insulin NPH

                empagliflozin, insulin NPH. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

                metformin, insulin NPH. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                linagliptin, insulin NPH. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

              • insulin regular human

                empagliflozin, insulin regular human. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

                metformin, insulin regular human. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

                linagliptin, insulin regular human. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Antidiabetic agents are often used in combination; dosage adjustments may be required when initiating or discontinuing antidiabetic agents.

              • iodixanol

                iodixanol increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .

              • letermovir

                letermovir will increase the level or effect of empagliflozin by unspecified interaction mechanism. Use Caution/Monitor. Monitor glucose concentrations.

              • istradefylline

                istradefylline will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Istradefylline 40 mg/day increased peak levels and AUC of CYP3A4 substrates in clinical trials. This effect was not observed with istradefylline 20 mg/day. Consider dose reduction of sensitive CYP3A4 substrates.

                istradefylline will increase the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Istradefylline 40 mg/day increased peak levels and AUC of P-gp substrates in clinical trials. Consider dose reduction of sensitive P-gp substrates.

              • ioflupane I 123

                ioflupane I 123 increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .

              • iohexol

                iohexol increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .

              • iopamidol

                iopamidol increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .

              • iopromide

                iopromide increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .

              • ioversol

                ioversol increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .

              • ioxilan

                ioxilan increases toxicity of metformin by unspecified interaction mechanism. Modify Therapy/Monitor Closely. Administration of intravascular iodinated contrast agents in metformin-treated patients has led to rare cases of acute decrease in renal function and the occurrence of lactic acidosis. The American College of Radiology Guidelines (2018) recommend temporarily stopping metformin in patients with eGFR is <30 mL/min/1.73 m2 or who are undergoing arterial catheter studies that might result in emboli to the renal arteries. Continue to withhold metformin for 48 hr subsequent to the procedure and reinstituted only after renal function has been reevaluated and found to be normal. .

              • isocarboxazid

                isocarboxazid will increase the level or effect of metformin by unspecified interaction mechanism. Use Caution/Monitor.

              • isoniazid

                isoniazid decreases effects of metformin by unspecified interaction mechanism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • isradipine

                isradipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • itraconazole

                itraconazole will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

              • ketoconazole

                ketoconazole will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

              • ketotifen, ophthalmic

                ketotifen, ophthalmic, metformin. Other (see comment). Use Caution/Monitor. Comment: Combination may result in thrombocytopenia (rare). Monitor CBC.

              • lanreotide

                lanreotide decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • lenacapavir

                lenacapavir will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Lencapavir may increase CYP3A4 substrates initiated within 9 months after last SC dose of lenacapavir, which may increase potential risk of adverse reactions of CYP3A4 substrates.

              • leuprolide

                leuprolide decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • levofloxacin

                levofloxacin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Quinolone antibiotic administration may result in hyper- or hypoglycemia. Gatifloxacin is most likely to produce dysglycemia; moxifloxacin is least likely.

              • levoketoconazole

                levoketoconazole will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

              • levonorgestrel intrauterine

                levonorgestrel intrauterine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • levonorgestrel oral

                levonorgestrel oral decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • levothyroxine

                levothyroxine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • linezolid

                linezolid will increase the level or effect of metformin by unspecified interaction mechanism. Use Caution/Monitor.

              • liothyronine

                liothyronine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • liotrix

                liotrix decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • liraglutide

                liraglutide, metformin. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Concurrent use may increase risk of hypoglycemia; monitor glucose levels.

              • lisinopril

                lisinopril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.

              • lithium

                empagliflozin decreases levels of lithium by Other (see comment). Use Caution/Monitor. Comment: Concomitant use of an SGLT2 inhibitor with lithium may decrease serum lithium concentrations; monitor serum lithium concentration more frequently during therapy initiation and dosage changes.

                metformin decreases levels of lithium by Other (see comment). Use Caution/Monitor. Comment: SGLT2 inhibitors with lithium may decrease serum lithium concentrations; monitor serum lithium concentration more frequently during therapy initiation and dosage changes.

              • lonafarnib

                lonafarnib will increase the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.

              • lonapegsomatropin

                lonapegsomatropin decreases effects of empagliflozin by Other (see comment). Use Caution/Monitor. Comment: Closely monitor blood glucose when treated with antidiabetic agents. Lonapegsomatropin may decrease insulin sensitivity, particularly at higher doses. Patients with diabetes mellitus may require adjustment of their doses of insulin and/or other antihyperglycemic agents.

                lonapegsomatropin decreases effects of empagliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

              • lonapegsomatropin

                lonapegsomatropin decreases effects of linagliptin by Other (see comment). Use Caution/Monitor. Comment: Closely monitor blood glucose when treated with antidiabetic agents. Lonapegsomatropin may decrease insulin sensitivity, particularly at higher doses. Patients with diabetes mellitus may require adjustment of their doses of insulin and/or other antihyperglycemic agents.

                lonapegsomatropin decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Closely monitor blood glucose when treated with antidiabetic agents. Lonapegsomatropin may decrease insulin sensitivity, particularly at higher doses. Patients with diabetes mellitus may require adjustment of their doses of insulin and/or other antihyperglycemic agents.

                lonapegsomatropin decreases effects of metformin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

                lonapegsomatropin decreases effects of linagliptin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

              • lopinavir

                lopinavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

                lopinavir will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

                lopinavir decreases effects of linagliptin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

              • lurasidone

                lurasidone, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.

              • methyclothiazide

                empagliflozin, methyclothiazide. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

              • metolazone

                empagliflozin, metolazone. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

              • mifepristone

                mifepristone will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

              • marijuana

                marijuana decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • mecasermin

                mecasermin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Additive hypoglycemic effects.

              • medroxyprogesterone

                medroxyprogesterone decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • methamphetamine

                methamphetamine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • methazolamide

                methazolamide increases toxicity of metformin by Other (see comment). Use Caution/Monitor. Comment: Decreases serum bicarbonate and induce non-anion gap, hyperchloremic metabolic acidosis.

              • mitotane

                mitotane decreases levels of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Mitotane is a strong inducer of cytochrome P-4503A4; monitor when coadministered with CYP3A4 substrates for possible dosage adjustments.

              • moexipril

                moexipril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.

              • moxifloxacin

                moxifloxacin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Quinolone antibiotic administration may result in hyper- or hypoglycemia. Gatifloxacin is most likely to produce dysglycemia; moxifloxacin is least likely.

              • nafcillin

                nafcillin will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer.

              • nateglinide

                empagliflozin, nateglinide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

              • nefazodone

                nefazodone will increase the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor.

              • nelfinavir

                nelfinavir will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

                nelfinavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

                nelfinavir decreases effects of linagliptin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

              • nevirapine

                nevirapine will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer.

                nevirapine will decrease the level or effect of linagliptin by Other (see comment). Use Caution/Monitor. Reports of hyperglycemia due to insulin resistance with protease inhibitors.

              • niacin

                niacin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • nicardipine

                nicardipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • nifedipine

                nifedipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • nilotinib

                nilotinib decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • nimodipine

                nimodipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • nisoldipine

                nisoldipine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • nizatidine

                nizatidine will increase the level or effect of metformin by decreasing renal clearance. Modify Therapy/Monitor Closely.

              • norelgestromin

                norelgestromin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • norethindrone

                norethindrone decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • norgestimate

                norgestimate decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • octreotide

                octreotide decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • ofloxacin

                ofloxacin increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Quinolone antibiotic administration may result in hyper- or hypoglycemia. Gatifloxacin is most likely to produce dysglycemia; moxifloxacin is least likely.

              • olanzapine

                olanzapine, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.

              • omacetaxine

                omacetaxine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • ombitasvir/paritaprevir/ritonavir & dasabuvir (DSC)

                ombitasvir/paritaprevir/ritonavir & dasabuvir (DSC) increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Monitor for signs of onset of lactic acidosis such as respiratory distress, somnolence, and non-specific abdominal distress or worsening renal function; concomitant metformin use in patients with renal insufficiency or hepatic impairment not recommended.

              • ondansetron

                ondansetron increases levels of metformin by Other (see comment). Use Caution/Monitor. Comment: Ondansetron inhibition of transporters (MATE or OCTs), which are responsible for active renal secretion of metformin may play a role.

              • opuntia ficus indica

                opuntia ficus indica increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.

              • oxcarbazepine

                oxcarbazepine decreases levels of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer.

              • paclitaxel protein bound

                paclitaxel protein bound will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • paliperidone

                paliperidone, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.

              • paroxetine

                paroxetine increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.

              • pasireotide

                pasireotide decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • patiromer

                patiromer will decrease the level or effect of metformin by drug binding in GI tract. Modify Therapy/Monitor Closely. Separate administration by at least 3 hr from patiromer

              • pentamidine

                pentamidine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • pentobarbital

                pentobarbital will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • perindopril

                perindopril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.

              • perphenazine

                perphenazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • phendimetrazine

                phendimetrazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • phenelzine

                phenelzine will increase the level or effect of metformin by unspecified interaction mechanism. Use Caution/Monitor.

              • phenobarbital

                phenobarbital will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer.

              • phentermine

                phentermine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • phenytoin

                phenytoin will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer.

                phenytoin decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • pioglitazone

                pioglitazone will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • procainamide

                metformin will increase the level or effect of procainamide by basic (cationic) drug competition for renal tubular clearance. Use Caution/Monitor.

              • prednisone

                prednisone will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • primidone

                primidone will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • procarbazine

                procarbazine will increase the level or effect of metformin by unspecified interaction mechanism. Use Caution/Monitor.

              • prochlorperazine

                prochlorperazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • progesterone intravaginal gel

                progesterone intravaginal gel decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • progesterone micronized

                progesterone micronized decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • progesterone, natural

                progesterone, natural decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • promethazine

                promethazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • quetiapine

                quetiapine, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.

              • quinapril

                quinapril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.

              • quinidine

                quinidine will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Use Caution/Monitor.

              • ramipril

                ramipril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.

              • rasagiline

                rasagiline will increase the level or effect of metformin by unspecified interaction mechanism. Use Caution/Monitor.

              • repaglinide

                empagliflozin, repaglinide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

              • rifabutin

                rifabutin will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer.

              • rifampin

                rifampin will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer.

                rifampin will decrease the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a P-gp inducer.

              • rifapentine

                rifapentine will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer.

              • risperidone

                risperidone, metformin. Other (see comment). Use Caution/Monitor. Comment: Atypical antipsychotics have been associated with hyperglycemia that may alter blood glucose control; monitor glucose levels closely.

              • ritonavir

                ritonavir increases levels of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Potential for increased toxicity. .

                ritonavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

                ritonavir decreases effects of linagliptin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

              • rucaparib

                rucaparib will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust dosage of CYP3A4 substrates, if clinically indicated.

              • saquinavir

                saquinavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

              • saquinavir

                saquinavir decreases effects of linagliptin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

                saquinavir will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

              • sarecycline

                sarecycline will increase the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Monitor for toxicities of P-gp substrates that may require dosage reduction when coadministered with P-gp inhibitors.

              • sertraline

                sertraline increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor.

              • shark cartilage

                shark cartilage increases effects of metformin by pharmacodynamic synergism. Use Caution/Monitor. Theoretical interaction.

              • sirolimus

                sirolimus decreases levels of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • somapacitan

                somapacitan decreases effects of empagliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

                somapacitan decreases effects of linagliptin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

                somapacitan decreases effects of metformin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

              • somatrogon

                somatrogon decreases effects of empagliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

                somatrogon decreases effects of linagliptin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

                somatrogon decreases effects of metformin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

              • somatropin

                somatropin decreases effects of empagliflozin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

                somatropin decreases effects of linagliptin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

                somatropin decreases effects of metformin by pharmacodynamic antagonism. Modify Therapy/Monitor Closely. Growth hormone (GH) analogs may decrease insulin sensitivity, particularly at higher doses. Antidiabetic agents may require dose adjustment after initiating growth hormone.

              • St John's Wort

                St John's Wort will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

                St John's Wort will decrease the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a P-gp inducer.

              • spironolactone

                empagliflozin, spironolactone. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

              • sulfamethoxypyridazine

                sulfamethoxypyridazine increases effects of metformin by unspecified interaction mechanism. Use Caution/Monitor. Risk of hypoglycemia.

              • stiripentol

                stiripentol, linagliptin. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Stiripentol is a CYP3A4 inhibitor and inducer. Monitor CYP3A4 substrates coadministered with stiripentol for increased or decreased effects. CYP3A4 substrates may require dosage adjustment.

                stiripentol will increase the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Consider reducing the dose of P-glycoprotein (P-gp) substrates, if adverse reactions are experienced when administered concomitantly with stiripentol.

              • tacrolimus

                tacrolimus decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • tazemetostat

                tazemetostat will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.

              • tecovirimat

                tecovirimat will decrease the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Tecovirimat is a weak CYP3A4 inducer. Monitor sensitive CYP3A4 substrates for effectiveness if coadministered.

              • temsirolimus

                temsirolimus decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • tenofovir DF

                tenofovir DF increases levels of metformin by decreasing renal clearance. Use Caution/Monitor. Increased risk of lactic acidosis.

              • thioridazine

                thioridazine decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • thyroid desiccated

                thyroid desiccated decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • tibolone

                tibolone decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

              • tipranavir

                tipranavir decreases effects of metformin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

                tipranavir decreases effects of linagliptin by Other (see comment). Use Caution/Monitor. Comment: Reports of hyperglycemia due to insulin resistance with protease inhibitors. .

                tipranavir will decrease the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a P-gp inducer.

              • tolazamide

                empagliflozin, tolazamide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

                tolazamide, linagliptin. Other (see comment). Use Caution/Monitor. Comment: When linagliptin is used in combination with sulfonylureas, a lower dose of the sulfonylurea may be required to reduce risk of hypoglycemia.

              • tolbutamide

                empagliflozin, tolbutamide. Either increases effects of the other by pharmacodynamic synergism. Modify Therapy/Monitor Closely. Consider a lower dose of insulin or insulin secretagogue to avoid hypoglycemia when coadministered with SGLT2 inhibitors.

              • tolbutamide

                tolbutamide, linagliptin. Other (see comment). Use Caution/Monitor. Comment: When linagliptin is used in combination with sulfonylureas, a lower dose of the sulfonylurea may be required to reduce risk of hypoglycemia.

              • topiramate

                topiramate increases toxicity of metformin by Other (see comment). Use Caution/Monitor. Comment: Decreases serum bicarbonate and induce non-anion gap, hyperchloremic metabolic acidosis.

                topiramate will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Use of alternative treatments is strongly recommended when linagliptin is to be administered with a CYP3A4 inducer

              • torsemide

                torsemide decreases effects of metformin by pharmacodynamic antagonism. Use Caution/Monitor.

                empagliflozin, torsemide. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

              • trandolapril

                trandolapril increases toxicity of metformin by unspecified interaction mechanism. Use Caution/Monitor. Increases risk for hypoglycemia and lactic acidosis.

              • triamterene

                empagliflozin, triamterene. Either increases effects of the other by pharmacodynamic synergism. Use Caution/Monitor. Coadministration of empagliflozin with diuretics results in increased urine volume and frequency of voids, which might enhance the potential for volume depletion.

              Minor (67)

              • acetazolamide

                acetazolamide will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

              • agrimony

                agrimony increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • American ginseng

                American ginseng increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • amitriptyline

                amitriptyline increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • amoxapine

                amoxapine increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • anamu

                anamu increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Theoretical interaction.

              • anastrozole

                anastrozole will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

              • bendroflumethiazide

                bendroflumethiazide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.

              • budesonide

                budesonide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.

              • chlorothiazide

                chlorothiazide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.

              • chlorthalidone

                chlorthalidone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.

              • chromium

                chromium increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • clomipramine

                clomipramine increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • clonidine

                clonidine decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Diminished symptoms of hypoglycemia.

                clonidine, metformin. Other (see comment). Minor/Significance Unknown. Comment: Decreased symptoms of hypoglycemia. Mechanism: decreased hypoglycemia induced catecholamine production.

              • cornsilk

                cornsilk increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of hypoglycemia (theoretical interaction).

              • cortisone

                cortisone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.

              • cyanocobalamin

                metformin decreases levels of cyanocobalamin by unspecified interaction mechanism. Minor/Significance Unknown. It may take several years of metformin therapy to develop vitamin B12 deficiency.

              • cyclopenthiazide

                cyclopenthiazide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.

              • cyclophosphamide

                cyclophosphamide will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

              • damiana

                damiana decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Theoretical interaction.

              • danazol

                danazol increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • deflazacort

                deflazacort decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.

              • desipramine

                desipramine increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • devil's claw

                devil's claw increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • dexamethasone

                dexamethasone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.

              • diltiazem

                diltiazem will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.

              • doxepin

                doxepin increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • elderberry

                elderberry increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of hypoglycemia (in vitro research).

              • eucalyptus

                eucalyptus increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Theoretical interaction.

              • famotidine

                famotidine increases levels of metformin by decreasing renal clearance. Minor/Significance Unknown.

              • fludrocortisone

                fludrocortisone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.

              • fluoxymesterone

                fluoxymesterone increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • fo-ti

                fo-ti increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • folic acid

                metformin decreases levels of folic acid by unspecified interaction mechanism. Minor/Significance Unknown.

              • forskolin

                forskolin increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Colenol, a compound found in Coleus root, may stimulate insulin release.

              • furosemide

                metformin decreases levels of furosemide by unspecified interaction mechanism. Minor/Significance Unknown.

                furosemide increases levels of metformin by unspecified interaction mechanism. Minor/Significance Unknown. Patient should be closely observed for loss of blood glucose control; when drugs are withdrawn from a patient receiving metformin, patient should be observed closely for hypoglycemia.

              • gotu kola

                gotu kola increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. (Theoretical interaction).

              • guanfacine

                guanfacine decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Diminished symptoms of hypoglycemia.

                guanfacine, metformin. Other (see comment). Minor/Significance Unknown. Comment: Decreased symptoms of hypoglycemia. Mechanism: decreased hypoglycemia induced catecholamine production.

              • gymnema

                gymnema increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • horse chestnut seed

                horse chestnut seed increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • hydrochlorothiazide

                hydrochlorothiazide will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.

                hydrochlorothiazide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.

              • hydrocortisone

                hydrocortisone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.

              • ibuprofen/famotidine

                ibuprofen/famotidine increases levels of metformin by decreasing renal clearance. Minor/Significance Unknown.

              • imipramine

                imipramine increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • indapamide

                indapamide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.

              • juniper

                juniper increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of hypoglycemia (theoretical interaction).

              • L-methylfolate

                metformin decreases levels of L-methylfolate by unspecified interaction mechanism. Minor/Significance Unknown.

              • larotrectinib

                larotrectinib will increase the level or effect of linagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.

              • lofepramine

                lofepramine increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • lycopus

                lycopus increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of hypoglycemia (theoretical interaction).

              • maitake

                maitake increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. Increased risk of hypoglycemia (animal research).

              • maprotiline

                maprotiline increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • memantine

                memantine will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.

              • mesterolone

                mesterolone increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • methyclothiazide

                methyclothiazide will increase the level or effect of metformin by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.

                methyclothiazide decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.

              • methylprednisolone

                methylprednisolone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown.

              • methyltestosterone

                methyltestosterone increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • metolazone

                metolazone decreases effects of metformin by pharmacodynamic antagonism. Minor/Significance Unknown. Thiazide dosage >50 mg/day may increase blood glucose.

              • midodrine

                metformin will increase the level or effect of midodrine by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.

              • nettle

                nettle increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown. (Theoretical interaction).

              • nifedipine

                nifedipine increases levels of metformin by enhancing GI absorption. Applies only to oral form of both agents. Minor/Significance Unknown.

              • nortriptyline

                nortriptyline increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • ofloxacin

                metformin will increase the level or effect of ofloxacin by basic (cationic) drug competition for renal tubular clearance. Minor/Significance Unknown.

                ofloxacin, metformin. Mechanism: unspecified interaction mechanism. Minor/Significance Unknown. Potential dysglycemia.

              • oxandrolone

                oxandrolone increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • oxymetholone

                oxymetholone increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              • patiromer

                patiromer, empagliflozin. cation binding in GI tract. Minor/Significance Unknown. No observed clinically important interaction. No separation of dosing required.

              • pegvisomant

                pegvisomant increases effects of metformin by pharmacodynamic synergism. Minor/Significance Unknown.

              Previous
              Next:

              Adverse Effects

              >10%

              Upper respiratory tract infection (8-10.3%)

              Urinary tract infection (9.6-10.2%)

              Metformin

              • Hypoglycemia (13.7%)
              • Diarrhea (12.5%)

              1-10%

              Nasopharyngitis (5.8-8.1%)

              Diarrhea (2.2-6.6%)

              Constipation (5.1-5.8%)

              Gastroenteritis (2.9-5.8%)

              Headache (5.1%)

              Empagliflozin

              • Urinary tract infection (7.6-9.3%)
              • Increased LDL cholesterol (4.6-6.5%)
              • Female genital mycotic infections (5.4-6.4%)
              • Dyslipidemia (2.9-3.9%)
              • Male genital mycotic infections (1.6-3.1%)
              • Increased hematocrit (2.8%)
              • Arthralgia (2.3-2.4%)
              • Nausea (1.1-2.3%)
              • Thirst (1.5-1.7%)

              Linagliptin

              • Nasopharyngitis (6.1-7%)
              • Diarrhea (3-3.3%)
              • Increased uric acid (2.7%)
              • Cough (1.4-2.1%)

              Metformin

              • Decreased vitamin B-12 (~7%)
              • Nausea (6.7%)
              • Diarrhea (>5%)
              • Nausea/vomiting (>5%)
              • Flatulence (>5%)
              • Abdominal discomfort (>5%)
              • Indigestion (>5%)
              • Asthenia (>5%)
              • Headache (>5%)

              <1%

              Hypoglycemia (0.7%)

              Postmarketing Reports

              Acute pancreatitis, including fatal pancreatitis

              Ketoacidosis

              Urosepsis and pyelonephritis

              Necrotizing fasciitis of the perineum (Fournier gangrene)

              Hypersensitivity reactions (eg, anaphylaxis, angioedema, exfoliative skin conditions)

              Severe and disabling arthralgia

              Bullous pemphigoid

              Skin reactions (eg, rash, urticaria)

              Mouth ulceration, stomatitis

              Previous
              Next:

              Warnings

              Black Box Warnings

              Lactic Acidosis

              • Postmarketing cases of metformin-associated lactic acidosis have resulted in death, hypothermia, hypotension, and resistant bradyarrhythmias
              • Onset of metformin-associated lactic acidosis is often subtle, accompanied only by nonspecific symptoms (eg, malaise, myalgias, respiratory distress, somnolence, abdominal pain)
              • Metformin-associated lactic acidosis was characterized by elevated blood lactate levels (>5 mmol/L), anion gap acidosis (without evidence of ketonuria or ketonemia), an increased lactate/pyruvate ratio, and metformin plasma levels generally >5 mcg/mL
              • Risk factors include renal impairment, concomitant use of certain drugs, age ≥65 years, radiological studies with contrast, surgery and other procedures, hypoxic states, excessive alcohol intake, and hepatic impairment
              • Steps to reduce the risk of and to manage metformin-associated lactic acidosis in these high-risk groups are provided in the full prescribing information
              • If lactic acidosis is suspected, discontinue treatment and institute general supportive measures in a hospital setting
              • Prompt hemodialysis is recommended

              Contraindications

              Severe renal impairment (eGFR <30 mL/min/1.73 m2), ESRD, or dialysis

              Metabolic acidosis, including diabetic ketoacidosis

              Hypersensitivity to empagliflozin, linagliptin, metformin, or any of the excipients in the product

              Cautions

              Drug combination not indicated for treatment of type 1 diabetes mellitus

              Postmarketing cases of metformin-associated lactic acidosis, including fatal cases, were reported (see Black Box Warnings)

              Postmarketing cases of serious urinary tract infections, including urosepsis, were reported; evaluate for signs and symptoms and treat appropriately

              Serious hypersensitivity reactions, (eg, angioedema) in patients treated with empagliflozin reported postmarketing; discontinue therapy and treat promptly if it occurs per standard of care

              There have been reports of acute pancreatitis, including fatal pancreatitis; if pancreatitis suspected, promptly discontinue

              Heart failure observed with 2 other DPP-4 inhibitors; consider risks and benefits in patients with known risk factors for heart failure; monitor for signs and symptoms

              Empagliflozin causes intravascular volume contraction; symptomatic hypotension may occur after starting therapy; postmarketing reports of acute kidney injury, some requiring hospitalization and dialysis; assess volume status and correct

              Necrotizing fasciitis of the perineum (Fournier gangrene) reported in postmarketing surveillance with SGLT2 inhibitors; it is a rare life-threatening necrotizing infection requiring urgent surgical intervention

              Hypersensitivity reactions reported with linagliptin; onset of reactions occurred within the first 3 months after initiating linagliptin; exercise caution with history of angioedema to another DPP-4 inhibitor

              In controlled clinical trials of metformin, a decrease to subnormal levels of serum vitamin B-12 levels, without clinical manifestations, was observed

              Empagliflozin increases the risks of genital mycotic infections; patients with a history of genital mycotic infections were more likely to develop genital mycotic infections; monitor and treat appropriately

              Increased LDL cholesterol may occur with empagliflozin; monitor LDL cholesterol and treat per standard of care

              Severe and disabling arthralgia in patients taking DPP-4 inhibitors has been reported; consider discontinuing drug if DPP-4 inhibitor is a cause for severe joint pain

              Postmarketing cases of bullous pemphigoid requiring hospitalization have been reported with DPP-4 inhibitor use

              Assess patients who present with signs and symptoms of metabolic acidosis for ketoacidosis, regardless of blood glucose level; if suspected, discontinue Trijardy XR, evaluate, and treat promptly; before initiating treatment, consider risk factors for ketoacidosis; may require monitoring and temporary discontinuation of therapy in clinical situations known to predispose to ketoacidosis

              Consider temporarily discontinuing therapy in any setting of reduced oral intake (eg, acute illness, fasting) or fluid losses (eg, gastrointestinal illness or excessive heat exposure); monitor for signs and symptoms of acute kidney injury; if acute kidney injury occurs, discontinue therapy promptly and institute treatment

              Volume depletion

              • Therapy can cause intravascular volume depletion which may sometimes manifest as symptomatic hypotension or acute transient changes in creatinine; acute kidney injury, some requiring hospitalization and dialysis, in patients with type 2 diabetes mellitus receiving SGLT2 inhibitors reported postmarketing
              • Patients with impaired renal function (eGFR less than 60 mL/min/1.73 m2), elderly patients, or patients on loop diuretics may be at increased risk for volume depletion or hypotension
              • Before initiating therapy in patients with one or more of these characteristics, assess volume status and renal function; in patients with volume depletion, correct this condition before initiating treatment; monitor for signs and symptoms of volume depletion, and renal function after initiating therapy

              Drug interaction overview

              • Empagliflozin or linagliptin in combination with an insulin secretagogue (eg, sulfonylurea) or insulin was associated with a higher rate of hypoglycemia compared with placebo in a clinical trial; metformin may increase the risk of hypoglycemia when combined with insulin and/or an insulin secretagogue
              • Topiramate or other carbonic anhydrase inhibitors (eg, zonisamide, acetazolamide, dichlorphenamide) frequently decrease serum bicarbonate and induce nonanion gap, hyperchloremic metabolic acidosis
              • Concomitant use of drugs that interfere with common renal tubular transport systems involved in the renal elimination of metformin (eg, organic cationic transporter-2 [OCT2]/multidrug and toxin extrusion [MATE] inhibitors such as ranolazine, vandetanib, dolutegravir, and cimetidine) could increase systemic exposure to metformin and may increase the risk for lactic acidosis
              • Coadministration of empagliflozin with diuretics resulted in increased urine volume and frequency of voids, which might enhance the potential for volume depletion
              • Alcohol potentiates the effects of metformin on lactate metabolism
              • Rifampin decreased linagliptin exposure, suggesting that the efficacy of linagliptin may be reduced when administered in combination with a strong P-gp or CYP3A4 inducer; use of alternatives is strongly recommended when linagliptin is to be administered with a strong P-gp or CYP3A4 inducer
              • Certain drugs (eg, thiazides and other diuretics, corticosteroids, phenothiazines, thyroid products, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics, calcium channel blocking drugs, isoniazid) tend to produce hyperglycemia and may lead to loss of glycemic control
              • SGLT2 inhibitors increase urinary glucose excretion and lead to positive urine glucose tests
              • Measurements of 1,5-AG are unreliable in assessing glycemic control in patients taking SGLT2 inhibitors
              Previous
              Next:

              Pregnancy & Lactation

              Pregnancy

              Based on animal data showing adverse renal effects from empagliflozin, use is not recommended during the second and third trimesters of pregnancy

              Limited data available with Trijardy XR, linagliptin, or empagliflozin in pregnant women are insufficient to determine a drug-associated risk for major birth defects and miscarriage

              Published studies with metformin use during pregnancy have not reported a clear association with metformin and major birth defect or miscarriage risk

              There are risks to the mother and fetus associated with poorly controlled diabetes in pregnancy

              Animal data

              • In animal studies, empagliflozin resulted in adverse renal changes in rats when administered during a period of renal development corresponding to the late second and third trimesters of human pregnancy
              • Doses ~13-times the maximum clinical dose caused renal pelvic and tubule dilatations that were reversible
              • No adverse developmental effects were observed when linagliptin or metformin were administered to pregnant rats or rabbits

              Clinical considerations

              • Poorly controlled diabetes in pregnancy increases the maternal risk for diabetic ketoacidosis, preeclampsia, spontaneous abortions, preterm delivery, and delivery complications
              • Poorly controlled diabetes increases the fetal risk for major birth defects, stillbirth, and macrosomia-related morbidity

              Females and males of reproductive potential

              • Advise the potential for unintended pregnancy with premenopausal women treated with metformin may result in ovulation in some anovulatory women

              Lactation

              There is limited information regarding the presence of Trijardy XR or its components (empagliflozin, linagliptin, or metformin) in human milk, the effects on the breastfed infant, or the effects on milk production

              Limited published studies report that metformin is present in human milk

              Empagliflozin and linagliptin are present in rat milk

              Since human kidney maturation occurs in utero and during the first 2 years of life when lactational exposure may occur, there may be risk to the developing human kidney

              Owing to the potential for serious adverse reactions in a breastfed infant, including the potential for empagliflozin to affect postnatal renal development, advise patients that use is not recommended while breastfeeding

              Pregnancy Categories

              A: Generally acceptable. Controlled studies in pregnant women show no evidence of fetal risk.

              B: May be acceptable. Either animal studies show no risk but human studies not available or animal studies showed minor risks and human studies done and showed no risk.

              C: Use with caution if benefits outweigh risks. Animal studies show risk and human studies not available or neither animal nor human studies done.

              D: Use in LIFE-THREATENING emergencies when no safer drug available. Positive evidence of human fetal risk.

              X: Do not use in pregnancy. Risks involved outweigh potential benefits. Safer alternatives exist.

              NA: Information not available.

              Previous
              Next:

              Pharmacology

              Mechanism of Action

              Empagliflozin: SGLT2 inhibitor; SGLT2 is expressed in the proximal renal tubules and is responsible for the majority of the reabsorption of filtered glucose from the tubular lumen; SGLT2 inhibitors reduce glucose reabsorption and lower the renal threshold for glucose, thereby increasing urinary glucose excretion

              Linagliptin: DPP-4 inhibitor; increases and prolongs incretin hormone activity, which is inactivated by DPP-4 enzyme; incretins regulate glucose homeostasis by increasing insulin synthesis and release from pancreatic beta cells and reducing glucagon secretion from pancreatic alpha cells

              Metformin: Biguanide; acts by decreasing endogenous hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and use; improves glucose tolerance and lowers both basal and postprandial plasma glucose

              Absorption

              Empagliflozin

              • Peak plasma time: 1.5 hr
              • Peak plasma concentration (steady-state): 259 nmol/L (10-mg dose); 687 nmol/L (25-mg dose)
              • AUC (steady-state): 1870 nmol·hr/L (10-mg dose); 4740 nmol·hr/L (25-mg dose)

              Linagliptin

              • Absolute bioavailability: ~30%
              • May be administered with or without food

              Metformin

              • Peak plasma time: ~7-8 hr
              • Low- and high-fat meals prolonged metformin peak plasma time by ~3 hr, but peak plasma concentration was not affected

              Distribution

              Empagliflozin

              • Vd (steady-state): 73.8 L
              • Protein bound: 86.2%

              Linagliptin

              • Vd: 1110 L (single 5-mg IV dose)
              • Protein bound: 70-80%

              Metformin

              • Vd: 654 L
              • Negligibly bound to plasma proteins

              Metabolism

              Empagliflozin

              • Studies suggest that the primary route of metabolism in humans is glucuronidation by the uridine 5'-diphospho-glucuronosyltransferases UGT2B7, UGT1A3, UGT1A8, and UGT1A9

              Elimination

              Empagliflozin

              • Half-life: 12.4 hr
              • Oral clearance: 10.6 L/hr
              • Excretion: Feces (41.2%); urine (54.4%)

              Linagliptin

              • Half-life (steady-state): ~200 hr (terminal): 11 hr (accumulation)
              • Renal clearance (steady-state); ~70 mL/min
              • Excretion: Enterohepatic system (80%); urine (5%)

              Metformin

              • Half-life: ~6.2 hr (plasma); 17.6 hr (blood)

              Excretion: ~90% (renal)

              Previous
              Next:

              Administration

              Oral Administration

              Take qDay with morning meal

              Swallow whole; do not split, crush, dissolve, or chew

              Storage

              Tablet: Store at 20-25ºC (68-77ºF); excursions permitted to 15-30ºC (59-86ºF)

              Protect from exposure to high humidity

              Previous
              Next:

              Images

              No images available for this drug.
              Previous
              Next:

              Patient Handout

              A Patient Handout is not currently available for this monograph.
              Previous
              Next:

              Formulary

              FormularyPatient Discounts

              Adding plans allows you to compare formulary status to other drugs in the same class.

              To view formulary information first create a list of plans. Your list will be saved and can be edited at any time.

              Adding plans allows you to:

              • View the formulary and any restrictions for each plan.
              • Manage and view all your plans together – even plans in different states.
              • Compare formulary status to other drugs in the same class.
              • Access your plan list on any device – mobile or desktop.

              The above information is provided for general informational and educational purposes only. Individual plans may vary and formulary information changes. Contact the applicable plan provider for the most current information.

              Tier Description
              1 This drug is available at the lowest co-pay. Most commonly, these are generic drugs.
              2 This drug is available at a middle level co-pay. Most commonly, these are "preferred" (on formulary) brand drugs.
              3 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs.
              4 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs or specialty prescription products.
              5 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs or specialty prescription products.
              6 This drug is available at a higher level co-pay. Most commonly, these are "non-preferred" brand drugs or specialty prescription products.
              NC NOT COVERED – Drugs that are not covered by the plan.
              Code Definition
              PA Prior Authorization
              Drugs that require prior authorization. This restriction requires that specific clinical criteria be met prior to the approval of the prescription.
              QL Quantity Limits
              Drugs that have quantity limits associated with each prescription. This restriction typically limits the quantity of the drug that will be covered.
              ST Step Therapy
              Drugs that have step therapy associated with each prescription. This restriction typically requires that certain criteria be met prior to approval for the prescription.
              OR Other Restrictions
              Drugs that have restrictions other than prior authorization, quantity limits, and step therapy associated with each prescription.
              Additional Offers
              Email to Patient

              From:

              To:

              The recipient will receive more details and instructions to access this offer.

              By clicking send, you acknowledge that you have permission to email the recipient with this information.

              Email Forms to Patient

              From:

              To:

              The recipient will receive more details and instructions to access this offer.

              By clicking send, you acknowledge that you have permission to email the recipient with this information.

              Previous
              Medscape prescription drug monographs are based on FDA-approved labeling information, unless otherwise noted, combined with additional data derived from primary medical literature.