Dosing & Uses
Dosage Forms & Strengths
elexacaftor/tezacaftor/ivacaftor
fixed-dose tablet copackaged with ivacaftor tablet
- 100mg/50mg/75mg plus ivacaftor 150 mg
Cystic Fibrosis
Indicated for cystic fibrosis in patients who have at least 1 F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is estimated to represent 90% of the cystic fibrosis population
If genotype unknown, use FDA-cleared CF mutation test to confirm presence of at least one F508del mutation or a mutation that is responsive based on in vitro data
2 fixed-dose tablets (elexacaftor 100 mg, tezacaftor 50 mg, and ivacaftor 75 mg) PO qAM and 1 ivacaftor 150-mg tablet PO qPM; ~12 hr apart
Dosage Modifications
Renal impairment
- Mild or moderate (eGFR 30 to <90 mL/min/1.73 m2): No dosage adjustment required
- Severe (eGFR <30 mL/min/1.73 m2) or ESRD: Use caution
Hepatic impairment
- Mild (Child-Pugh A): No dosage adjustment required
- Moderate (Child-Pugh B): Not recommended unless benefit exceeds risk; if used administer as follows
-
Day 1
- 2 tab (100 mg elexacaftor/ 50 mg tezacaftor/ 75 mg ivacaftor) qAM; no evening dose of ivacaftor tablet
-
Day 2
- 1 tab (100 mg elexacaftor/ 50 mg tezacaftor/ 75 mg ivacaftor qAM; no evening dose of ivacaftor tablet
- Continue alternating Day 1 and Day 2 dosing thereafter
- Monitor liver function tests
- Severe (Child-Pugh C): Do not use
Coadministration with moderate or strong CYP3A inhibitors
-
Moderate CYP3A inhibitors
- Day 1: 2 tab (100 mg elexacaftor/ 50 mg tezacaftor/ 75 mg ivacaftor) qAM
- Day 2: 1 tab 150 mg ivacaftor qAM
- No evening dose of ivacaftor tablet
-
Strong CYP3A inhibitors
- 2 tab (100 mg elexacaftor/ 50 mg tezacaftor/ 75 mg ivacaftor) qAM twice a week; approximately 3-4 days apart
- No evening dose of ivacaftor tablet
Elevated liver function tests
-
Interrupt therapy
- ALT or AST >5x ULN, or
- ALT or AST >3x ULN with bilirubin >2x ULN
- Consider benefits and risks of resuming treatment following resolution of transaminase elevations
Dosing Considerations
Laboratory monitoring
- Assess liver function tests (ALT, AST, and bilirubin) for all patients before initiating, q3Months during the first year, and annually thereafter
- For patients with history of hepatobiliary disease or liver function test elevations, consider more frequent monitoring
Dosage Forms & Strengths
elexacaftor/tezacaftor/ivacaftor
fixed-dose tablet copackaged with ivacaftor tablet
- 100mg/50mg/75mg plus ivacaftor 150 mg
oral granules
- 80mg/40mg/60mg plus unit-dose ivacaftor 59.5 mg
- 100mg/50mg/75mg plus unit-dose ivacaftor 75 mg
Cystic Fibrosis
Indicated for cystic fibrosis in children aged ≥2 years who have at least 1 F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is estimated to represent 90% of the cystic fibrosis population
If genotype unknown, use FDA-cleared CF mutation test to confirm presence of at least one F508del mutation or a mutation that is responsive based on in vitro data
NOTE: Morning and evening should be taken ~12 hr apart
≥2 to <6 years
- <14 kg: 1 packet containing elexacaftor 80 mg/tezacaftor 40 mg/ivacaftor 60 mg oral granules qAM and 1 packet containing ivacaftor 59.5 mg oral granules PO qPM
- ≥14 kg: 1 packet containing elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 75 mg oral granules qAM and 1 packet containing ivacaftor 75 mg oral granules PO qPM
6 to <12 years
- <30 kg: 2 tab each containing 50 mg elexacaftor/ 25 mg tezacaftor/ 37.5 mg ivacaftor qAM and 1 ivacaftor 75-mg tab PO qPM
- ≥30 kg: 2 tab each containing 100 mg elexacaftor/ 50 mg tezacaftor/ 75 mg ivacaftor qAM and 1 ivacaftor 150-mg tab PO qPM
≥12 years
- 2 fixed-dose tablets (elexacaftor 100 mg, tezacaftor 50 mg, and ivacaftor 75 mg) PO qAM and 1 ivacaftor 150-mg tablet PO qPM
Dosage Modifications
Renal impairment
- Mild or moderate (eGFR 30 to <90 mL/min/1.73 m2): No dosage adjustment required
- Severe (eGFR <30 mL/min/1.73 m2) or ESRD: Use caution
Hepatic impairment
- Mild (Child-Pugh A): No dosage adjustment required
- Moderate (Child-Pugh B): Not recommended unless benefit exceeds risk; if used administer as follows
- NOTE: No evening ivacaftor tablet dose for all ages
-
≥2 to <6 years and <14 kg
- Weekly schedule
- Days 1-3, 5-6: 1 packet containing elexacaftor 80 mg/tezacaftor 40 mg/ivacaftor 60 mg oral granules qAM
- Days 4 and 7: No dose
-
≥2 to <6 years and ≥14 kg
- Weekly schedule
- Days 1-3, 5-6: 1 packet containing elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 75 mg oral granules qAM
- Days 4 and 7: No dose
-
≥6 to <12 years and <30 kg
- Alternating daily schedule
- Day 1: 2 tablets of elexacaftor 50 mg/tezacaftor 25 mg/ivacaftor 37.5 mg (total dose of elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 75 mg) qAM
- Day 2: 1 tablet of elexacaftor 50 mg/tezacaftor 25 mg/ivacaftor 37.5 mg qAM
-
≥6 to <12 years and ≥30 kg
- Alternating daily schedule
- Day 1: 2 tablets of elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 75 mg (total dose of elexacaftor 200 mg/tezacaftor 100 mg/ivacaftor 150 mg) qAM
- Day 2: 1 tablet elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 75 mg qAM
-
≥12 years
- Alternating daily schedule
- Day 1: 2 tablets of elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 75 mg (total dose of elexacaftor 200 mg/tezacaftor 100 mg/ivacaftor 150 mg) qAM
- Day 2: 1 tablet elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 75 mg qAM
- Severe (Child-Pugh C): Do not use
Coadministration with moderate CYP3A inhibitors
- Alternating daily dose schedules as follows
- NOTE: No evening ivacaftor tablet dose for all ages
-
≥2 to <6 years and <14 kg
- Day 1: 1 packet containing elexacaftor 80 mg/tezacaftor 40 mg/ivacaftor 60 mg qAM
- Day 2: 1 packet containing ivacaftor 59.5 mg oral granules qAM
-
≥2 to <6 years and ≥14 kg
- Day 1: 1 packet containing elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 75 mg qAM
- Day 2: 1 packet containing ivacaftor 75 mg oral granules qAM
-
≥6 to <12 years and <30 kg
- Day 1: 2 tablets of elexacaftor 50 mg/tezacaftor 25 mg/ivacaftor 37.5 mg (total dose of elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 75 mg qAM
- Day 2: 1 tablet of ivacaftor 75 mg qAM
-
≥6 years and ≥30 kg
- Day 1: 2 tablets elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 75 mg (total dose of elexacaftor 200 mg/tezacaftor 100 mg/ivacaftor 150 mg) qAM
- Day 2: 1 tablet of ivacaftor 150 mg qAM
Coadministration with strong CYP3A inhibitors
- Twice weekly dosing
- NOTE: No evening ivacaftor tablet dose for all ages
-
≥2 to <6 years and <14 kg
- 1 packet containing elexacaftor 80 mg/tezacaftor 40 mg/ivacaftor 60 mg in AM twice a week, ~3-4 days apart
-
≥2 to <6 years and ≥14 kg
- 1 packet containing elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 75 mg in AM twice a week, ~3-4 days apart
-
≥6 to <12 years and <30 kg
- 2 tablets of elexacaftor 50 mg/tezacaftor 25 mg/ivacaftor 37.5 mg (total dose of elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 75 mg) in AM twice a week, ~3-4 days apart
-
≥6 and ≥30 kg
- 2 tablets of elexacaftor 100 mg/tezacaftor 50 mg/ivacaftor 75 mg (total dose of elexacaftor 200 mg/tezacaftor 100 mg/ivacaftor 150 mg) in AM twice a week, ~3-4 days apart
Elevated liver function tests
- Interrupt therapy
- ALT or AST >5x ULN, or
- ALT or AST >3x ULN with bilirubin >2x ULN
- Consider benefits and risks of resuming treatment following resolution of transaminase elevations
Dosing Considerations
Laboratory monitoring
- Assess liver function tests (ALT, AST, and bilirubin) for all patients before initiating, q3Months during the first year, and annually thereafter
- For patients with history of hepatobiliary disease or liver function test elevations, consider more frequent monitoring
Interactions
Interaction Checker
No Results

Contraindicated
Serious - Use Alternative
Significant - Monitor Closely
Minor

Contraindicated (1)
- lonafarnib
ivacaftor will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
Serious - Use Alternative (62)
- abametapir
abametapir increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. For 2 weeks after abametapir application, avoid taking drugs that are CYP3A4 substrates. If not feasible, avoid use of abametapir.
abametapir will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. For 2 weeks after abametapir application, avoid taking drugs that are CYP3A4 substrates. If not feasible, avoid use of abametapir. - amobarbital
amobarbital will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- apalutamide
apalutamide will decrease the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- apalutamide
apalutamide will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of apalutamide, a strong CYP3A4 inducer, with drugs that are CYP3A4 substrates can result in lower exposure to these medications. Avoid or substitute another drug for these medications when possible. Evaluate for loss of therapeutic effect if medication must be coadministered. Adjust dose according to prescribing information if needed.
- avapritinib
ivacaftor will increase the level or effect of avapritinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of avapritinib with strong CYP3A4 inhibitors.
- bosentan
bosentan will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
bosentan decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold). - butabarbital
butabarbital will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- carbamazepine
carbamazepine decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold).
- butalbital
butalbital will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- carbamazepine
carbamazepine will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- chloramphenicol
chloramphenicol will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- cimetidine
ivacaftor increases levels of cimetidine by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- colchicine
ivacaftor increases levels of colchicine by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug. Avoid use of colchicine with P-gp inhibitors. If coadministration is necessary, decrease colchicine dose or frequency as recommended in prescribing information. Use of any colchicine product in conjunction with P-gp inhibitors is contraindicated in patients with renal or hepatic impairment. .
- dabigatran
ivacaftor increases levels of dabigatran by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug. Atrial fibrillation: Avoid coadministering dabigatran with P-gp inhibitors if CrCl <30 mL/min. DVT/PE treatment: Avoid coadministering dabigatran with P-gp inhibitors if CrCl <50 mL/min.
- dabrafenib
dabrafenib will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- dexamethasone
dexamethasone will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
dexamethasone decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold). - efavirenz
efavirenz will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
efavirenz, ivacaftor. Other (see comment). Avoid or Use Alternate Drug. Comment: Efavirenz decreases levels of ivacaftor by CYP enzyme induction; whereas, ivacaftor increases levels of efavirenz by inhibiting CYP3A4 . - elacestrant
ivacaftor will increase the level or effect of elacestrant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- enzalutamide
enzalutamide will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- enzalutamide
enzalutamide will decrease the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- eslicarbazepine acetate
eslicarbazepine acetate will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
eslicarbazepine acetate will decrease the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold) - etravirine
etravirine decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold).
etravirine will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. - fexinidazole
fexinidazole will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Fexinidazole inhibits CYP3A4. Coadministration may increase risk for adverse effects of CYP3A4 substrates.
fexinidazole will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Fexinidazole inhibits CYP3A4. Coadministration may increase risk for adverse effects of CYP3A4 substrates. - fosphenytoin
fosphenytoin decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold).
fosphenytoin will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. - grapefruit
grapefruit increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid grapefruit, grapefruit juice, or Seville oranges while taking ivacaftor.
grapefruit will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of tezacaftor with grapefruit juice, which contains 1 or more components that moderately inhibit CYP3A, may increase exposure of tezacaftor. Avoid food containing grapefruit or Seville oranges. - infigratinib
ivacaftor will increase the level or effect of infigratinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- ivosidenib
ivosidenib will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of sensitive CYP3A4 substrates with ivosidenib or replace with alternative therapies. If coadministration is unavoidable, monitor patients for loss of therapeutic effect of these drugs.
- ivosidenib
ivosidenib will decrease the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of sensitive CYP3A4 substrates with ivosidenib or replace with alternative therapies. If coadministration is unavoidable, monitor patients for loss of therapeutic effect of these drugs.
- larotrectinib
ivacaftor will decrease the level or effect of larotrectinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- lemborexant
ivacaftor will increase the level or effect of lemborexant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of lemborexant with moderate or strong CYP3A inhibitors.
- lonafarnib
lonafarnib will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- lurbinectedin
ivacaftor will increase the level or effect of lurbinectedin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- midazolam intranasal
ivacaftor will increase the level or effect of midazolam intranasal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of moderate CYP3A4 inhibitors with midazolam intranasal causes higher midazolam systemic exposure, which may prolong sedation.
- mifepristone
mifepristone will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- mitotane
mitotane will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- mobocertinib
ivacaftor will increase the level or effect of mobocertinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If use of moderate CYP3A4 inhibitor unavoidable, reduce mobocertinib dose by ~50% (eg, 160 to 80 mg); closely monitor QTc interval.
- nafcillin
nafcillin decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold).
nafcillin will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. - nevirapine
nevirapine will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
nevirapine, ivacaftor. Other (see comment). Avoid or Use Alternate Drug. Comment: Nevirapine decreases levels of ivacaftor by CYP enzyme induction; whereas, ivacaftor increases levels of efavirenz by inhibiting CYP3A4. - omaveloxolone
ivacaftor will increase the level or effect of omaveloxolone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If unavoidable, reduce omaveloxolone dose to 100 mg/day. Closely monitor for adverse effects. If adverse effects emerge, further reduce to 50 mg/day.
- oxcarbazepine
oxcarbazepine will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- oxcarbazepine
oxcarbazepine decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold).
- pacritinib
ivacaftor will increase the level or effect of pacritinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- pemigatinib
ivacaftor will increase the level or effect of pemigatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration with strong or moderate CYP3A4 inhibitors is unavoidable, reduce pemigatinib dose (refer to drug monograph dosage modifications). After discontinuing the CYP3A4 inhibitor for 3 elimination half-lives, may resume previous pemigatinib dose.
- pentobarbital
pentobarbital decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold).
pentobarbital will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. - pexidartinib
ivacaftor will increase the level or effect of pexidartinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration with strong or moderate CYP3A4 inhibitors is unavoidable, reduce pexidartinib dose (refer to drug monograph dosage modifications). After discontinuing the CYP3A4 inhibitor for 3 elimination half-lives, may resume previous pexidartinib dose.
- phenobarbital
phenobarbital will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- phenobarbital
phenobarbital decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold).
- phenytoin
phenytoin decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold).
phenytoin will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. - primidone
primidone decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold).
primidone will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. - rifabutin
rifabutin decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold).
rifabutin will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. - rifampin
rifampin decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold).
rifampin will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. - rifapentine
rifapentine decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold).
rifapentine will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. - rimegepant
ivacaftor will increase the level or effect of rimegepant by P-glycoprotein (MDR1) efflux transporter. Avoid or Use Alternate Drug.
- St John's Wort
St John's Wort will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- secobarbital
secobarbital will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- ruxolitinib topical
ivacaftor increases levels of ruxolitinib topical by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Ivacaftor and its M1 metabolite has the potential to inhibit CYP3A4, may significantly increase systemic exposure to 3A4 substrates.
- selumetinib
ivacaftor will increase the level or effect of selumetinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration with strong or moderate CYP3A4 inhibitors cannot be avoided, reduce selumetinib dosage (refer to selumetinib monograph for further information). After discontinuation of the strong or moderate CYP3A4 inhibitor for 3 elimination half-lives, resume selumetinib dose that was taken before initiating the inhibitor.
- siponimod
ivacaftor will increase the level or effect of siponimod by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Coadministration of siponimod with a moderate or strong CYP3A4 inhibitor PLUS a moderate or strong CYP2C9 inhibitor is not recommended.
- St John's Wort
St John's Wort decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with strong CYP3A4 inducers; systemic exposure of ivacaftor substantially reduced (ie, ~9-fold).
- tazemetostat
ivacaftor will increase the level or effect of tazemetostat by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of tazemetostat with moderate CYP3A4 inhibitors. If coadministration is unavoidable, reduce tazemetostat current dose (see drug monograph Dosage Modifications).
- tucatinib
tucatinib will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid concomitant use of tucatinib with CYP3A substrates, where minimal concentration changes may lead to serious or life-threatening toxicities. If unavoidable, reduce CYP3A substrate dose according to product labeling.
tucatinib will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid concomitant use of tucatinib with CYP3A substrates, where minimal concentration changes may lead to serious or life-threatening toxicities. If unavoidable, reduce CYP3A substrate dose according to product labeling. - voxelotor
voxelotor will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Voxelotor increases systemic exposure of sensitive CYP3A4 substrates. Avoid coadministration with sensitive CYP3A4 substrates with a narrow therapeutic index. Consider dose reduction of the sensitive CYP3A4 substrate(s) if unable to avoid.
voxelotor will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Voxelotor increases systemic exposure of sensitive CYP3A4 substrates. Avoid coadministration with sensitive CYP3A4 substrates with a narrow therapeutic index. Consider dose reduction of the sensitive CYP3A4 substrate(s) if unable to avoid.
Monitor Closely (218)
- acetaminophen
acetaminophen increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- acetaminophen IV
acetaminophen IV increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- acetaminophen rectal
acetaminophen rectal increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- aliskiren
ivacaftor increases levels of aliskiren by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- alvimopan
ivacaftor increases levels of alvimopan by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- ambrisentan
ivacaftor increases levels of ambrisentan by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- amiodarone
amiodarone will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
ivacaftor increases levels of amiodarone by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
amiodarone will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification. - amitriptyline
ivacaftor increases levels of amitriptyline by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- aprepitant
aprepitant will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
- armodafinil
armodafinil increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- atazanavir
atazanavir will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
atazanavir will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor. - atogepant
ivacaftor will increase the level or effect of atogepant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.
- berotralstat
tezacaftor increases levels of berotralstat by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Reduced berotralstat dose to 110 mg/day when coadministered with P-gp inhibitors.
elexacaftor increases levels of berotralstat by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Reduced berotralstat dose to 110 mg/day when coadministered with P-gp inhibitors. - atorvastatin
ivacaftor increases levels of atorvastatin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- azelastine
azelastine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- belzutifan
belzutifan will decrease the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. If unable to avoid coadministration of belzutifan with sensitive CYP3A4 substrates, consider increasing the sensitive CYP3A4 substrate dose in accordance with its prescribing information.
- bendamustine
ivacaftor increases levels of bendamustine by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- betamethasone
betamethasone increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- betamethasone topical
betamethasone topical increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- betrixaban
ivacaftor increases levels of betrixaban by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- bicalutamide
bicalutamide will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
bicalutamide increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Reduce ivacaftor dose to 150 mg once daily when coadministered with moderate CYP3A4 inhibitors. - budesonide
ivacaftor increases levels of budesonide by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- cenobamate
cenobamate will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Increase dose of CYP3A4 substrate, as needed, when coadministered with cenobamate.
- carvedilol
ivacaftor increases levels of carvedilol by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- cenobamate
cenobamate will decrease the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Increase dose of CYP3A4 substrate, as needed, when coadministered with cenobamate.
- ceritinib
ivacaftor increases levels of ceritinib by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
ceritinib will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
ceritinib will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor. - chloramphenicol
chloramphenicol will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- clarithromycin
clarithromycin will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor.
- chlorzoxazone
chlorzoxazone increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- cimetidine
cimetidine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification. .
- ciprofloxacin
ivacaftor increases levels of ciprofloxacin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
ciprofloxacin increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors . - clarithromycin
clarithromycin will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- clemastine
clemastine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- cobicistat
cobicistat will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
cobicistat will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor. - conivaptan
conivaptan will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
conivaptan will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor. - crizotinib
crizotinib will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
crizotinib will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor. - crofelemer
crofelemer increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Crofelemer has the potential to inhibit CYP3A4 at concentrations expected in the gut; unlikely to inhibit systemically because minimally absorbed.
- cyclosporine
cyclosporine will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
- cyclosporine
cyclosporine will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
ivacaftor increases levels of cyclosporine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index. - dabrafenib
dabrafenib will decrease the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely.
- danazol
danazol increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- darunavir
darunavir will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
darunavir will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor. - daunorubicin
ivacaftor increases levels of daunorubicin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- diltiazem
diltiazem will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. When tezacaftor/ivacaftor is combined with moderate CYP3A4 inhibitors, administer tezacaftor/ivacaftor (100 mg/150 mg) in the morning, every other day. Administer ivacaftor 150 mg alonein the evening, every other day, on alternate days from tezacaftor/ivacaftor.
- desloratadine
ivacaftor increases levels of desloratadine by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- desvenlafaxine
desvenlafaxine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- dexamethasone
ivacaftor increases levels of dexamethasone by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- dexmedetomidine
dexmedetomidine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- diazepam intranasal
ivacaftor will increase the level or effect of diazepam intranasal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Strong or moderate CYP3A4 inhibitors may decrease rate of diazepam elimination, thereby increasing adverse reactions to diazepam.
- diclofenac
diclofenac increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- diclofenac topical
diclofenac topical increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- digoxin
ivacaftor increases levels of digoxin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- diltiazem
diltiazem will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- disulfiram
disulfiram increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- docetaxel
ivacaftor increases levels of docetaxel by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- doxorubicin
ivacaftor increases levels of doxorubicin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- doxycycline
doxycycline will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
- dronedarone
dronedarone will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
dronedarone will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification. - drospirenone
drospirenone increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- duvelisib
duvelisib will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with duvelisib increases AUC of a sensitive CYP3A4 substrate which may increase the risk of toxicities of these drugs. Consider reducing the dose of the sensitive CYP3A4 substrate and monitor for signs of toxicities of the coadministered sensitive CYP3A substrate.
- duvelisib
duvelisib will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
ivacaftor will increase the level or effect of duvelisib by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index. - edoxaban
ivacaftor will increase the level or effect of edoxaban by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Dose adjustment may be required with strong P-gp inhibitors. DVT/PE treatment: Decrease dose to 30 mg PO once daily. NVAF: No dose reduction recommended
- efavirenz
efavirenz will decrease the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.
- elagolix
elagolix decreases levels of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Elagolix is a weak-to-moderate CYP3A4 inducer. Monitor CYP3A substrates if coadministered. Consider increasing CYP3A substrate dose if needed.
elagolix decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Elagolix is a weak-to-moderate CYP3A4 inducer. Monitor CYP3A substrates if coadministered. Consider increasing CYP3A substrate dose if needed. - eletriptan
ivacaftor increases levels of eletriptan by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- encorafenib
encorafenib, tezacaftor. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Encorafenib both inhibits and induces CYP3A4 at clinically relevant plasma concentrations. Coadministration of encorafenib with sensitive CYP3A4 substrates may result in increased toxicity or decreased efficacy of these agents.
- elvitegravir/cobicistat/emtricitabine/tenofovir DF
elvitegravir/cobicistat/emtricitabine/tenofovir DF will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- encorafenib
encorafenib will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- entrectinib
ivacaftor will increase the level or effect of entrectinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Avoid coadministration of moderate CYP3A4 inhibitors with entrectinib, a CYP3A4 substrate. If coadministration unavoidable, reduce entrectinib dose. Resume previous entrectinib dose after discontinuing moderate CYP3A inhibitor for 3-5 elimination half-lives.
- erythromycin base
erythromycin base will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
ivacaftor increases levels of erythromycin base by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
erythromycin base will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor. - erythromycin ethylsuccinate
ivacaftor increases levels of erythromycin ethylsuccinate by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
erythromycin ethylsuccinate will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
erythromycin ethylsuccinate will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification. - erythromycin lactobionate
erythromycin lactobionate will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
ivacaftor increases levels of erythromycin lactobionate by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
erythromycin lactobionate will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification. - erythromycin stearate
erythromycin stearate will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
erythromycin stearate will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
ivacaftor increases levels of erythromycin stearate by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index. - estradiol
ivacaftor increases levels of estradiol by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- fedratinib
fedratinib will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Adjust dose of drugs that are CYP3A4 substrates as necessary.
- etoposide
ivacaftor increases levels of etoposide by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- everolimus
ivacaftor increases levels of everolimus by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- fedratinib
fedratinib will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- fexofenadine
ivacaftor increases levels of fexofenadine by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- finerenone
ivacaftor will increase the level or effect of finerenone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Monitor serum potassium during initiation and dosage adjustment of either finererone or moderate CYP3A4 inhibitors. Adjust finererone dosage as needed.
- fluconazole
fluconazole will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
fluconazole will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor. - fluoxetine
fluoxetine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- fluvoxamine
fluvoxamine will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust dose when coadministered with a moderate CYP3A4 inhibitor
- fluvastatin
fluvastatin increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- fluvoxamine
fluvoxamine will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with CYP3A4 inhibitors; see ivacaftor prescribing information for precise dosage information
- fosamprenavir
fosamprenavir will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
ivacaftor increases levels of fosamprenavir by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
fosamprenavir will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor. - fosaprepitant
fosaprepitant will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
- fostamatinib
fostamatinib will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- glecaprevir/pibrentasvir
ivacaftor will increase the level or effect of glecaprevir/pibrentasvir by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- glyburide
ivacaftor increases levels of glyburide by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
glyburide increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors . - haloperidol
haloperidol will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
haloperidol will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification. - hydralazine
hydralazine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- idelalisib
idelalisib will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor.
- hydrocortisone
ivacaftor increases levels of hydrocortisone by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- idelalisib
idelalisib will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- iloperidone
iloperidone will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
iloperidone will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor. - imatinib
imatinib will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
imatinib will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor. - indinavir
indinavir will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
ivacaftor increases levels of indinavir by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
indinavir will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor. - irbesartan
irbesartan increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- isoniazid
isoniazid will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor.
- irinotecan
ivacaftor increases levels of irinotecan by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- irinotecan liposomal
ivacaftor increases levels of irinotecan liposomal by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- isavuconazonium sulfate
ivacaftor will increase the level or effect of isavuconazonium sulfate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.
- isoniazid
isoniazid will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- istradefylline
istradefylline will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Istradefylline 40 mg/day increased peak levels and AUC of CYP3A4 substrates in clinical trials. This effect was not observed with istradefylline 20 mg/day. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
istradefylline will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Istradefylline 40 mg/day increased peak levels and AUC of CYP3A4 substrates in clinical trials. This effect was not observed with istradefylline 20 mg/day. Consider dose reduction of sensitive CYP3A4 substrates. - itraconazole
itraconazole will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor.
itraconazole will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification. - ivermectin
ivacaftor increases levels of ivermectin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- ketoconazole
ketoconazole will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor.
- ketoconazole
ketoconazole will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- lapatinib
lapatinib will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
lapatinib will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
ivacaftor increases levels of lapatinib by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index. - lefamulin
ivacaftor will increase the level or effect of lefamulin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor for adverse effects if lefamulin is coadministered with moderate CYP3A inhibitors.
- lenacapavir
lenacapavir will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Lencapavir may increase CYP3A4 substrates initiated within 9 months after last SC dose of lenacapavir, which may increase potential risk of adverse reactions of CYP3A4 substrates.
- lenacapavir
lenacapavir will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Lencapavir may increase CYP3A4 substrates initiated within 9 months after last SC dose of lenacapavir, which may increase potential risk of adverse reactions of CYP3A4 substrates.
- letermovir
letermovir will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- levamlodipine
ivacaftor will increase the level or effect of levamlodipine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Coadministration with moderate and strong CYP3A inhibitors results in increased systemic exposure to amlodipine and may require dose reduction. Monitor for symptoms of hypotension and edema when amlodipine is coadministered with CYP3A inhibitors to determine the need for dose adjustment.
- levoketoconazole
levoketoconazole will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
levoketoconazole will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor. - lidocaine
ivacaftor increases levels of lidocaine by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
ivacaftor increases effects of lidocaine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. - lopinavir
lopinavir will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor.
- lomustine
lomustine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- loperamide
ivacaftor increases levels of loperamide by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- lopinavir
lopinavir will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- loratadine
ivacaftor increases levels of loratadine by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- lorlatinib
lorlatinib will decrease the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.
lorlatinib will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. - lovastatin
ivacaftor increases levels of lovastatin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- metronidazole
metronidazole will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
- maraviroc
ivacaftor increases levels of maraviroc by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- mavacamten
ivacaftor will increase the level or effect of mavacamten by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Inititiation of moderate CYP3A4 inhibitors may require decreased mavacamten dose.
- mefloquine
ivacaftor increases levels of mefloquine by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- methimazole
methimazole increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- methoxsalen
methoxsalen increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- methylprednisolone
ivacaftor increases levels of methylprednisolone by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- metronidazole
metronidazole increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- micafungin
micafungin increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- mifepristone
mifepristone will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- mitomycin
ivacaftor increases levels of mitomycin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- mitotane
mitotane decreases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Mitotane is a strong inducer of cytochrome P-4503A4; monitor when coadministered with CYP3A4 substrates for possible dosage adjustments.
- mitoxantrone
mitoxantrone increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- morphine
ivacaftor increases levels of morphine by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- naldemedine
ivacaftor increases levels of naldemedine by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Monitor naldemedine for potential adverse effects if coadministered with P-gp inhibitors.
- nefazodone
nefazodone will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor.
nefazodone will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification. - nelfinavir
ivacaftor increases levels of nelfinavir by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
nelfinavir will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
nelfinavir will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor. - netupitant/palonosetron
netupitant/palonosetron will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
netupitant/palonosetron will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification. - nicardipine
nicardipine will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor.
- nilotinib
ivacaftor increases levels of nilotinib by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- nintedanib
ivacaftor increases levels of nintedanib by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. If nintedanib adverse effects occur, management may require interruption, dose reduction, or discontinuation of therapy .
- nirmatrelvir/ritonavir
nirmatrelvir/ritonavir will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce dosage of ivacaftor, elexacaftor/tezacaftor/ivacaftor, or tezacaftor/ivacaftor if coadministered.
- nizatidine
nizatidine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- olanzapine
olanzapine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- oliceridine
ivacaftor will increase the level or effect of oliceridine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. If concomitant use is necessary, may require less frequent oliceridine dosing. Closely monitor for respiratory depression and sedation and titrate subsequent doses accordingly. If inhibitor is discontinued, consider increase oliceridine dosage until stable drug effects are achieved. Monitor for signs of opioid withdrawal.
- ondansetron
ivacaftor increases levels of ondansetron by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- orphenadrine
orphenadrine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- oxybutynin
oxybutynin increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- oxybutynin topical
oxybutynin topical increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- oxybutynin transdermal
oxybutynin transdermal increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- paclitaxel
ivacaftor increases levels of paclitaxel by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- paclitaxel protein bound
ivacaftor increases levels of paclitaxel protein bound by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- paroxetine
paroxetine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- pazopanib
ivacaftor increases levels of pazopanib by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- pentamidine
pentamidine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- pilocarpine
pilocarpine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- posaconazole
ivacaftor increases levels of posaconazole by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
posaconazole will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor.
posaconazole will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification. - pravastatin
ivacaftor increases levels of pravastatin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
pravastatin increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors . - quinupristin/dalfopristin
quinupristin/dalfopristin will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
- prednisone
ivacaftor increases levels of prednisone by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- progesterone intravaginal gel
progesterone intravaginal gel increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- progesterone micronized
progesterone micronized increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- propofol
propofol increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- quinidine
ivacaftor increases levels of quinidine by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- quinupristin/dalfopristin
quinupristin/dalfopristin will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- ranolazine
ivacaftor increases levels of ranolazine by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- ribociclib
ribociclib will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
ribociclib will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor. - rifampin
ivacaftor increases levels of rifampin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- ritonavir
ritonavir will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor.
- rifaximin
ivacaftor increases levels of rifaximin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- rimegepant
ivacaftor will increase the level or effect of rimegepant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Avoid repeating rimegepant dose within 48 hr if coadministered with a moderate CYP3A4 inhibitor.
- risperidone
ivacaftor increases levels of risperidone by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
risperidone increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors . - ritonavir
ritonavir will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
ivacaftor increases levels of ritonavir by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index. - rucaparib
rucaparib will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust dosage of CYP3A4 substrates, if clinically indicated.
rucaparib will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust dosage of CYP3A4 substrates, if clinically indicated. - saquinavir
saquinavir will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
saquinavir will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor.
ivacaftor increases levels of saquinavir by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index. - saxagliptin
ivacaftor increases levels of saxagliptin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- schisandra
schisandra will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
- selegiline
selegiline increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- sertraline
sertraline will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
sertraline will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor. - silodosin
ivacaftor increases levels of silodosin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- stiripentol
stiripentol, tezacaftor. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Stiripentol is a CYP3A4 inhibitor and inducer. Monitor CYP3A4 substrates coadministered with stiripentol for increased or decreased effects. CYP3A4 substrates may require dosage adjustment.
- simvastatin
ivacaftor increases levels of simvastatin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- sirolimus
ivacaftor increases levels of sirolimus by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- sitagliptin
ivacaftor increases levels of sitagliptin by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- stiripentol
stiripentol will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
- sulconazole
sulconazole increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- tacrolimus
ivacaftor increases levels of tacrolimus by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- talazoparib
ivacaftor will increase the level or effect of talazoparib by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- tamoxifen
tamoxifen increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- tazemetostat
tazemetostat will decrease the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor.
tazemetostat will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. - tecovirimat
tecovirimat will decrease the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Tecovirimat is a weak CYP3A4 inducer. Monitor sensitive CYP3A4 substrates for effectiveness if coadministered.
tecovirimat will decrease the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Tecovirimat is a weak CYP3A4 inducer. Monitor sensitive CYP3A4 substrates for effectiveness if coadministered. - temsirolimus
ivacaftor increases levels of temsirolimus by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- tetracycline
tetracycline will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
- teniposide
ivacaftor increases levels of teniposide by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- testosterone
ivacaftor increases levels of testosterone by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
testosterone increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors . - testosterone buccal system
testosterone buccal system increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- testosterone topical
testosterone topical increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- tipranavir
tipranavir will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
tipranavir will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor. - tolvaptan
ivacaftor increases levels of tolvaptan by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- verapamil
verapamil will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a moderate CYP3A inhibitor.
- topotecan
ivacaftor increases levels of topotecan by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- tranylcypromine
tranylcypromine increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- valproic acid
valproic acid increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- vardenafil
ivacaftor will increase the level or effect of vardenafil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Vardenafil dose may need to be reduced if coadministered with moderate or strong CYP3A4 inhibitors
- venetoclax
ivacaftor increases levels of venetoclax by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- verapamil
verapamil will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with moderate CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification.
ivacaftor increases levels of verapamil by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index. - vinblastine
ivacaftor increases levels of vinblastine by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- vincristine
ivacaftor increases levels of vincristine by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- vincristine liposomal
ivacaftor increases levels of vincristine liposomal by P-glycoprotein (MDR1) efflux transporter. Use Caution/Monitor. Ivacaftor and its M1 metabolite has the potential to inhibit P-gp; may significantly increase systemic exposure to sensitive P-gp substrates with a narrow therapeutic index.
- voclosporin
ivacaftor will increase the level or effect of voclosporin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce voclosporin daily dosage to 15.8 mg PO in AM and 7.9 mg PO in PM.
- voriconazole
voriconazole will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Adjust tezacaftor dosage regimen if coadministered with a strong CYP3A inhibitor.
voriconazole will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce ivacaftor dose if coadministered with strong CYP3A4 inhibitors. See specific ivacaftor-containing product for precise dosage modification. - zafirlukast
zafirlukast increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
- zanubrutinib
ivacaftor will increase the level or effect of zanubrutinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce zanubrutinib dose when coadministered with a moderate CYP3A4 inhibitor. Interrupt dose as recommended for adverse reactions. After discontinuing the CYP3A4 inhibitor, resume previous dose of zanubrutinib. See zanubrutinib Dosage Modifications for precise recommendation.
- ziprasidone
ziprasidone increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Monitor when coadministered with weak CYP3A4 inhibitors .
Minor (4)
- acetazolamide
acetazolamide increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
acetazolamide will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown. - anastrozole
anastrozole will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
anastrozole increases levels of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown. - cyclophosphamide
cyclophosphamide will increase the level or effect of ivacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
cyclophosphamide will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown. - larotrectinib
larotrectinib will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
Adverse Effects
>10%
Headache (17%)
Upper respiratory tract infection (16%)
Abdominal pain (14%)
Diarrhea (13%)
1-10%
Rash (10%)
Increased ALT (10%)
Increased AST (9%)
Increased BUN (9%)
Nasal congestion (9%)
Rhinorrhea (8%)
Rhinitis (7%)
Influenza (7%)
Sinusitis (5%)
Increased bilirubin (5%)
2 to <5%
- Flatulence
- Abdominal distension
- Conjunctivitis
- Pharyngitis
- Respiratory tract infection
- Tonsillitis
- Urinary tract infection
- Increased C-reactive protein
- Hypoglycemia
- Dizziness
- Dysmenorrhea
- Acne
- Eczema
- Pruritus
Warnings
Contraindications
None
Cautions
Noncongenital lens opacities reported with ivacaftor-containing regimens; other risk factors were present in some cases (eg, corticosteroid use, radiation exposure); a possible risk attributable to treatment with ivacaftor cannot be excluded
Hormonal contraceptives may play a role in occurrence of rash; for patients taking hormonal contraceptives who develop rash, consider interrupting therapy and hormonal contraceptives; following the resolution of rash, consider resuming therapy without the hormonal contraceptives; if rash does not recur, resumption of hormonal contraceptives can be considered
Elevated transaminases and hepatic injury
- Elevated liver transaminases and bilirubin levels observed; liver failure leading to transplantation reported in a patient with cirrhosis and portal hypertension while receiving treatment
- Avoid use in patients with pre-existing advanced liver disease (eg, as evidenced by cirrhosis, portal hypertension, ascites, hepatic encephalopathy) unless benefits expected to outweigh risks; if used in these patients, they should be closely monitored after initiation of treatment
- In some instances, transaminase elevations have been associated with concomitant elevations in total bilirubin and/or international normalized ratio (INR) and have resulted in patients being hospitalized for intervention, including patients without a history of pre-existing liver disease
- Measure levels before initiating, q3Months during first year, and annually thereafter; consider more frequent monitoring for those with history of hepatic disease; interrupt dosing for significant elevations
Drug interaction overview
-
CYP3A inhibitors or inducers
- Coadministration with moderate or strong CYP3A inhibitors increases systemic exposure of elexacaftor/tezacaftor/ivacaftor; dosage adjustment is required if coadministered
- Coadministration with strong CYP3A inducers is not recommended; ivacaftor systemic exposure is significantly decreased and exposure to elexacaftor and tezacaftor are expected to decrease if coadministered with a strong CYP3A inducer
-
Potential for elexacaftor/tezacaftor/ivacaftor to affect other drugs
- Ivacaftor may inhibit CYP2C9; monitor INR if coadministered with warfarin; caution with other CYP2C9 substrates (eg, glimepiride, glipizide)
- Coadministration of ivacaftor or tezacaftor/ivacaftor with digoxin, a sensitive P-gp substrate, increased digoxin AUC by 1.3-fold, consistent with weak inhibition of P-gp by ivacaftor
- Elexacaftor and its active metabolite (M23-ELX) inhibit uptake by OATP1B1 and OATP1B3 in vitro; coadministration may increase exposures of drugs that are substrates of these transporters (eg, statins, glyburide, nateglinide, repaglinide)
Pregnancy & Lactation
Pregnancy
Human data are limited and incomplete from clinical trials on the use of elexacaftor/tezacaftor/ivacaftor or its individual components in pregnant women to inform a drug-associated risk
Although there are no animal reproduction studies with the concomitant administration of elexacaftor, tezacaftor, and ivacaftor, separate reproductive and developmental studies were conducted with each active component in pregnant rats and rabbits
Animal data
- In animal embryofetal development studies, oral administration of elexacaftor to pregnant rats and rabbits during organogenesis demonstrated no teratogenicity or adverse developmental effects at doses that produced maternal exposures up to ~2 times the exposure at the maximum recommended human dose (MRHD) in rats and 4 times the MRHD in rabbits
Lactation
No data are available regarding the presence of elexacaftor, tezacaftor, or ivacaftor in human milk, the effects on the breastfed infant, or the effects on milk production.
Elexacaftor, tezacaftor, and ivacaftor are excreted into the milk of lactating rats
Pregnancy Categories
A: Generally acceptable. Controlled studies in pregnant women show no evidence of fetal risk.
B: May be acceptable. Either animal studies show no risk but human studies not available or animal studies showed minor risks and human studies done and showed no risk. C: Use with caution if benefits outweigh risks. Animal studies show risk and human studies not available or neither animal nor human studies done. D: Use in LIFE-THREATENING emergencies when no safer drug available. Positive evidence of human fetal risk. X: Do not use in pregnancy. Risks involved outweigh potential benefits. Safer alternatives exist. NA: Information not available.Pharmacology
Mechanism of Action
Elexacaftor and tezacaftor bind to different sites on the cystic fibrosis transmembrane conductance regulator (CFTR) protein and have an additive effect in facilitating the cellular processing and trafficking of F508del-CFTR to increase the amount of CFTR protein delivered to the cell surface compared with either molecule alone
Ivacaftor potentiates the channel open probability (or gating) of the CFTR protein at the cell surface
Absorption
Absolute bioavailability
- Elexacaftor: 80%
- Tezacaftor: Not determined
- Ivacaftor: Not determined
Peak plasma time
- Elexacaftor: 6 hr
- Tezacaftor: 3 hr
- Ivacaftor: 4 hr
Peak plasma concentration
- Elexacaftor: 8.7 mcg/ml
- Tezacaftor: 6.8 mcg/mL
- Ivacaftor: 1.2 mcg/mL
AUC
- Elexacaftor: 162 mcg⋅h/mL
- Tezacaftor: 94.5 mcg⋅h/mL
- Ivacaftor: 11.7 mcg⋅h/mL
Time to steady-state
- Elexacaftor: Within 14 days
- Tezacaftor: Within 8 days
- Ivacaftor: Within 3-5 days
Distribution
Protein bound
- Elexacaftor: >99%
- Tezacaftor: ~99%
- Ivacaftor: ~99%
Vd
- Elexacaftor: 53.7 L
- Tezacaftor: 82 L
- Ivacaftor: 293 L
Metabolism
Elexacaftor
- Primary pathway: CYP3A4/5
- Active metabolite: M23-ELX
- Metabolite potency relative to parent: Similar
Tezacaftor
- Primary pathway: CYP3A4/5
- Active metabolite: M1-TEZ
- Metabolite potency relative to parent: Similar
Ivacaftor
- Primary pathway: CYP3A4/5
- Active metabolite: M1-IVA
- Metabolite potency relative to parent: ~1/6
Elimination
Half-life
- Elexacaftor: 29.8 hr
- Tezacaftor: 17.4 hr
- Ivacaftor: 15 hr
Clearance
- Elexacaftor: 1.18 L/hr
- Tezacaftor: 0.79 L/hr
- Ivacaftor: 10.2 L/hr
Excretion
- Elexacaftor: Feces (87.3%; primarily as metabolites); urine (0.23%)
- Tezacaftor: Feces (72%; unchanged or as M2-TEZ); urine (14%; 0.79% unchanged)
- Ivacaftor: Feces (87.8%); urine (6.6%)
Pharmacogenomics
CFTR gene mutations that produce CFTR protein and are responsive to ivacaftor
- 3141del9, 546insCTA
- A46D, A120T, A234D, A349V, A455E, A1006E, A1067T
- D110E, D110H, D192G, D443Y, D4437;G576A;R668C, D579G, D614G, D836Y, D924N, D979V, D1152H, D1270N
- E56K, E60K, E92K, E116K, E193K, E403D, E588V, E822K
- F191V, F311del, F311L, F508C, F508C;S1251N, F508del, F575Y, F1016S, F1052V, F1074L, F1099L
- G27R, G85E, G126D, G178E, G178R, G194R, G194V, G314E, G463V, G480C, G551D, G551S, G576A, G576A;R668C, G970D, G1061R, G1069R, G1244E, G1249R, G1349D
- H939R, H199Y, H939R, H1054D, H1085P, H1085R, H1375P
- I148T, I175V, I336K, I502T, I601F, I618T I807M, I980K, I1027T, I1139V, I1269N, I1366N
- K1060T
- L15P, L165S, L206W, L320V, L346P, L453S, L967S, L997F, L1077P, L1324P, L1335P, L1480P
- M152V, M265R, M952I, M952T, M1101K
- P5L, P67L, P205S, P574H
- Q98R, Q237E, Q237H, Q359R, Q1291R
- R31L, R74W, R74W;D1270N, R74W;V201M, R74W;V201M;D127N, R75Q, R117C, R117G, R117H, R117L, R117P, R170H, R258G, R334L, R334Q, R347H, R347L, R347P, R352Q, R352W, R553Q, R668C, R751L, R792G, R933G, R1066H, R1070Q, R1070W, R1162L, R1283M, R1283S
- S13F, S341P, S364P, S492F S549N, S549R, S737F, S589N, S737F, S912L, S945L, S977F, S1159F, S1159P, S1251N, S1255P
- T338I, T1036N, T1053I
- V201M, V232D, V456F, V562I, V754M, V1153E, V1240G, V1293G
- W361R, W1098C, W1282R
- Y109N, Y161D, Y161S, Y563N, Y1014C, Y1032C
Administration
Oral Administration
Swallow tablets whole; do not chew, crush, or split
Take with fat-containing food (eg, meals or snacks prepared with butter or oils or those containing eggs, cheeses, nuts, whole milk, or meats)
Missed dose
- ≤6 hr since missing a morning or evening dose: Take missed dose as soon as possible and continue on the original schedule
- >6 hr since a missed morning dose: Take missed dose as soon as possible and NOT take the evening dose; the next scheduled morning dose should be taken at the usual time
- >6 hr since a missed evening dose: Do NOT take the missed dose; the next scheduled morning dose should be taken at the usual time
- Morning and evening doses should not be taken at the same time
Oral granules
- Administer each dose immediately before or after ingestion of fat containing food
- Mix entire contents of each packet of oral granules with 1 teaspoon (5 mL) of age-appropriate soft food or liquid (eg, pureed fruits or vegetables, yogurt, applesauce, water, milk, juice) that is at or below room temperature
- Once mixed, consume product completely within 1 hour
Storage
Tablets: Store at 68-77ºF (20-25ºC); excursions permitted to 59-86ºF (15-30ºC)
Oral granules
Store at 68-77ºF (20-25ºC); excursions permitted to 59-86ºF (15-30ºC)
Use within 1 hr of mixing
Images
Formulary
Adding plans allows you to compare formulary status to other drugs in the same class.
To view formulary information first create a list of plans. Your list will be saved and can be edited at any time.
Adding plans allows you to:
- View the formulary and any restrictions for each plan.
- Manage and view all your plans together – even plans in different states.
- Compare formulary status to other drugs in the same class.
- Access your plan list on any device – mobile or desktop.