Dosing & Uses
Dosage Forms & Strengths
capsule
- 50mg
- 75mg
Hutchinson-Gilford Progeria Syndrome
Indicated to reduce the risk of mortality in Hutchinson-Gilford progeria syndrome (HGPS)
Initial: 115 mg/m2 PO BID with morning and evening meals
After 4 months: Increase to 150 mg/m2 PO BID
Round all total daily doses to nearest 25-mg increment
Progeroid Laminopathies
Indicated for processing-deficient progeroid laminopathies with heterozygous LMNA mutation with progerinlike protein accumulation or homozygous or compound heterozygous ZMPSTE24 mutations
Initial: 115 mg/m2 PO BID with morning and evening meals
After 4 months: Increase to 150 mg/m2 PO BID
Round all total daily doses to nearest 25-mg increment
Dosage Modifications
Renal or hepatic impairment
- Not studied
Gastrointestinal adverse reactions
- If patients taking 150 mg/m2 BID experience repeated episodes of vomiting and/or diarrhea resulting in dehydration or weight loss, reduce to starting dose of 115 mg/m2 BID
CYP3A inhibitors and inducers
- Contraindicated with moderate or strong CYP3A inhibitors or inducers
-
Coadministration with weak CYP3A inhibitor
- If unavoidable, reduce or continue at starting dose (115 mg/m2 BID)
- Resume previous dose 14 days after discontinuing weak CYP3A inhibitor
Dosing Considerations
Limitations of use: Not indicated for other progeroid syndromes or processing-proficient progeroid laminopathies
Temporary discontinuation for midazolam use
- Temporarily discontinue lonafarnib for 10-14 days before and 2 days after administration of midazolam
Dosage Forms & Strengths
capsule
- 50mg
- 75mg
Hutchinson-Gilford Progeria Syndrome
Indicated to reduce the risk of mortality in Hutchinson-Gilford progeria syndrome (HGPS) in patients aged ≥12 months with BSA >0.39 m2
Initial: 115 mg/m2 PO BID with morning and evening meals
After 4 months: Increase to 150 mg/m2 PO BID
Round all total daily doses to nearest 25-mg increment
Progeroid Laminopathies
Indicated for processing-deficient progeroid laminopathies with heterozygous LMNA mutation with progerin-like protein accumulation or homozygous or compound heterozygous ZMPSTE24 mutations in patients aged ≥12 months with BSA >0.39 m2
Initial: 115 mg/m2 PO BID with morning and evening meals
After 4 months: Increase to 150 mg/m2 PO BID
Round all total daily doses to nearest 25-mg increment
Dosage Modifications
Renal or hepatic impairment
- Not studied
Gastrointestinal adverse reactions
- If patients taking 150 mg/m2 BID experience repeated episodes of vomiting and/or diarrhea resulting in dehydration or weight loss, reduce to starting dose of 115 mg/m2 BID
CYP3A inhibitors and inducers
- Contraindicated with moderate or strong CYP3A inhibitors or inducers
-
Coadministration with weak CYP3A inhibitor
- If unavoidable, reduce or continue at starting dose (115 mg/m2 BID)
- Resume previous dose 14 days after discontinuing weak CYP3A inhibitor
Dosing Considerations
Limitations of use: Not indicated for other progeroid syndromes or processing-proficient progeroid laminopathies
Appropriate dosage strength is not available for patients with BSA <0.39 m2
Temporary discontinuation for midazolam use
- Temporarily discontinue lonafarnib for 10-14 days before and 2 days after administration of midazolam
Interactions
Interaction Checker
No Results

Contraindicated
Serious - Use Alternative
Significant - Monitor Closely
Minor

Contraindicated (108)
- abametapir
abametapir will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- amiodarone
amiodarone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- amobarbital
amobarbital will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- apalutamide
apalutamide will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- aprepitant
aprepitant will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- armodafinil
armodafinil will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- atazanavir
atazanavir will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- atorvastatin
lonafarnib will increase the level or effect of atorvastatin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated.
- berotralstat
berotralstat will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- bexarotene
bexarotene will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- bicalutamide
bicalutamide will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- bosentan
bosentan will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- brigatinib
brigatinib will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- butabarbital
butabarbital will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- butalbital
butalbital will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- carbamazepine
carbamazepine will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- ceritinib
ceritinib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- chloramphenicol
chloramphenicol will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- clarithromycin
clarithromycin will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- cobicistat
cobicistat will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- conivaptan
conivaptan will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- crizotinib
crizotinib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- cyclosporine
cyclosporine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- dabrafenib
dabrafenib will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- darunavir
darunavir will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- diltiazem
diltiazem will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- doxycycline
doxycycline will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- dronedarone
dronedarone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- efavirenz
efavirenz will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- elagolix
elagolix will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- elvitegravir/cobicistat/emtricitabine/tenofovir DF
elvitegravir/cobicistat/emtricitabine/tenofovir DF will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- encorafenib
encorafenib, lonafarnib. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate that is contraindicated with strong or moderate CYP3A4 inhibitors or inducers. Encorafenib is both a CYP3A4 inhibitor and an inducer.
- entacapone
entacapone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- enzalutamide
enzalutamide will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- erythromycin base
erythromycin base will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- erythromycin ethylsuccinate
erythromycin ethylsuccinate will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- erythromycin lactobionate
erythromycin lactobionate will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- erythromycin stearate
erythromycin stearate will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- eslicarbazepine acetate
eslicarbazepine acetate will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- etravirine
etravirine will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- fedratinib
fedratinib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- fexinidazole
fexinidazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib contraindicated with strong or moderate CYP3A4 inhibitors.
- finerenone
lonafarnib will increase the level or effect of finerenone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated.
- fluconazole
fluconazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- fluvoxamine
fluvoxamine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- fosamprenavir
fosamprenavir will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- fosaprepitant
fosaprepitant will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- fosphenytoin
fosphenytoin will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- fostamatinib
fostamatinib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- grapefruit
grapefruit will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- haloperidol
haloperidol will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- idelalisib
idelalisib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- iloperidone
iloperidone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- imatinib
imatinib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- indinavir
indinavir will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- isavuconazonium sulfate
lonafarnib will increase the level or effect of isavuconazonium sulfate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated.
- isoniazid
isoniazid will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- itraconazole
itraconazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- ivacaftor
ivacaftor will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- ivosidenib
ivosidenib will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- ketoconazole
ketoconazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- lapatinib
lapatinib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- larotrectinib
larotrectinib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- lefamulin
lefamulin will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- lenacapavir
lenacapavir will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated.
- letermovir
letermovir will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- levoketoconazole
levoketoconazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- lopinavir
lopinavir will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- lorlatinib
lorlatinib will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- lovastatin
lonafarnib will increase the level or effect of lovastatin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated.
- lumacaftor/ivacaftor
lumacaftor/ivacaftor, lonafarnib. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate that is contraindicated with strong or moderate CYP3A4 inhibitors or inducers. Lumacaftor/ivacaftor is both a CYP3A4 inhibitor and an inducer.
- mavacamten
lonafarnib will increase the level or effect of mavacamten by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Strong CYP3A4 inhibitors may increase mavacamten systemic exposure, resulting in heart failure due to systolic dysfunction.
lonafarnib will increase the level or effect of mavacamten by affecting hepatic enzyme CYP2C19 metabolism. Contraindicated. Strong or moderate CYP2C19 inhibitors may increase mavacamten systemic exposure, resulting in heart failure due to systolic dysfunction. - metronidazole
metronidazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- midazolam
lonafarnib will increase the level or effect of midazolam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Coadministration is contraindicated; temporarily discontinue lonafarnib for 10-14 days before and 2 days after administration of midazolam.
- mifepristone
mifepristone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- mitotane
mitotane will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- nafcillin
nafcillin will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- nefazodone
nefazodone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- nelfinavir
nelfinavir will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- netupitant/palonosetron
netupitant/palonosetron will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- pacritinib
lonafarnib will increase the level or effect of pacritinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated.
- pentobarbital
pentobarbital will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- pexidartinib
pexidartinib will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- phenobarbital
phenobarbital will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- phenytoin
phenytoin will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- posaconazole
posaconazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- primidone
primidone will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- quinupristin/dalfopristin
quinupristin/dalfopristin will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- ribociclib
ribociclib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- rifabutin
rifabutin will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- rifampin
rifampin will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- rifapentine
rifapentine will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- ritonavir
ritonavir will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- rucaparib
rucaparib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- saquinavir
saquinavir will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- schisandra
schisandra will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- secobarbital
secobarbital will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- sertraline
sertraline will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- simvastatin
lonafarnib will increase the level or effect of simvastatin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated.
- St John's Wort
St John's Wort will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- stiripentol
stiripentol, lonafarnib. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate that is contraindicated with strong or moderate CYP3A4 inhibitors or inducers. Stiripentol is both a CYP3A4 inhibitor and an inducer.
- telotristat ethyl
telotristat ethyl will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inducers is contraindicated.
- tetracycline
tetracycline will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- tipranavir
tipranavir will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- verapamil
verapamil will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- voclosporin
lonafarnib will increase the level or effect of voclosporin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated.
- voriconazole
voriconazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
- voxelotor
voxelotor will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Contraindicated. Lonafarnib is a sensitive CYP3A4 substrate. Coadministration with strong or moderate CYP3A4 inhibitors is contraindicated.
Serious - Use Alternative (250)
- abemaciclib
lonafarnib will increase the level or effect of abemaciclib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- acalabrutinib
lonafarnib will increase the level or effect of acalabrutinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- acetaminophen
acetaminophen will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- acetaminophen IV
acetaminophen IV will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- acetaminophen rectal
acetaminophen rectal will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- adagrasib
lonafarnib will increase the level or effect of adagrasib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration of adagrasib, a CYP3A4 substrate, with strong CYP3A4 inhibitors until adagrasib concentrations have reached steady-state (after ~8 days). If steady state is not reached, concomitant use of strong CYP3A4 inhibitors will increase adagrasib concentrations and risk of its toxicities
- ado-trastuzumab emtansine
lonafarnib will increase the level or effect of ado-trastuzumab emtansine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- alfentanil
lonafarnib will increase the level or effect of alfentanil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- alfuzosin
lonafarnib will increase the level or effect of alfuzosin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- alpelisib
lonafarnib will increase the level or effect of alpelisib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- alprazolam
alprazolam will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of alprazolam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling. - ambrisentan
lonafarnib will increase the level or effect of ambrisentan by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.
- amlodipine
amlodipine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of amlodipine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling. - apixaban
lonafarnib will increase the level or effect of apixaban by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- apremilast
lonafarnib will increase the level or effect of apremilast by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- aripiprazole
lonafarnib will increase the level or effect of aripiprazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- avanafil
lonafarnib will increase the level or effect of avanafil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- avapritinib
lonafarnib will increase the level or effect of avapritinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- avatrombopag
lonafarnib will increase the level or effect of avatrombopag by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- axitinib
lonafarnib will increase the level or effect of axitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- azelastine
azelastine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- bedaquiline
lonafarnib will increase the level or effect of bedaquiline by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- benzhydrocodone/acetaminophen
lonafarnib will increase the level or effect of benzhydrocodone/acetaminophen by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- benzphetamine
lonafarnib will increase the level or effect of benzphetamine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- betamethasone
betamethasone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- betamethasone topical
betamethasone topical will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- bortezomib
bortezomib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of bortezomib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
lonafarnib will increase the level or effect of bortezomib by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - bosutinib
lonafarnib will increase the level or effect of bosutinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- brentuximab vedotin
lonafarnib will increase the level or effect of brentuximab vedotin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- brexpiprazole
lonafarnib will increase the level or effect of brexpiprazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- brivaracetam
lonafarnib will increase the level or effect of brivaracetam by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.
- bromocriptine
bromocriptine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of bromocriptine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling. - budesonide
lonafarnib will increase the level or effect of budesonide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- budesonide inhaled
lonafarnib will increase the level or effect of budesonide inhaled by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- buprenorphine
lonafarnib will increase the level or effect of buprenorphine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- buprenorphine subdermal implant
lonafarnib will increase the level or effect of buprenorphine subdermal implant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- buprenorphine transdermal
lonafarnib will increase the level or effect of buprenorphine transdermal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- buprenorphine, long-acting injection
lonafarnib will increase the level or effect of buprenorphine, long-acting injection by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- buspirone
lonafarnib will increase the level or effect of buspirone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- busulfan
lonafarnib will increase the level or effect of busulfan by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- cabozantinib
lonafarnib will increase the level or effect of cabozantinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- calcifediol
lonafarnib will increase the level or effect of calcifediol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- calcitriol
lonafarnib will increase the level or effect of calcitriol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- cariprazine
lonafarnib will increase the level or effect of cariprazine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- carisoprodol
lonafarnib will increase the level or effect of carisoprodol by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.
- chlordiazepoxide
lonafarnib will increase the level or effect of chlordiazepoxide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- chloroquine
lonafarnib will increase the level or effect of chloroquine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- chlorpheniramine
lonafarnib will increase the level or effect of chlorpheniramine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- chlorzoxazone
chlorzoxazone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- ciclesonide inhaled
lonafarnib will increase the level or effect of ciclesonide inhaled by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- ciclesonide intranasal
lonafarnib will increase the level or effect of ciclesonide intranasal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- cilostazol
lonafarnib will increase the level or effect of cilostazol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- cimetidine
cimetidine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- ciprofloxacin
ciprofloxacin will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- citalopram
lonafarnib will increase the level or effect of citalopram by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
lonafarnib will increase the level or effect of citalopram by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - clemastine
clemastine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- clobazam
clobazam will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- clomipramine
lonafarnib will increase the level or effect of clomipramine by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.
- clonazepam
lonafarnib will increase the level or effect of clonazepam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- clorazepate
lonafarnib will increase the level or effect of clorazepate by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- cobimetinib
lonafarnib will increase the level or effect of cobimetinib by affecting hepatic enzyme CYP2E1 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- cocaine topical
cocaine topical will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of cocaine topical by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling. - colchicine
lonafarnib will increase the level or effect of colchicine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- copanlisib
lonafarnib will increase the level or effect of copanlisib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- crofelemer
crofelemer will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- cyclophosphamide
lonafarnib will increase the level or effect of cyclophosphamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- daclatasvir
lonafarnib will increase the level or effect of daclatasvir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- danazol
danazol will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- dantrolene
lonafarnib will increase the level or effect of dantrolene by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- dapsone
lonafarnib will increase the level or effect of dapsone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- daridorexant
lonafarnib will increase the level or effect of daridorexant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- darifenacin
darifenacin will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of darifenacin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling. - darolutamide
lonafarnib will increase the level or effect of darolutamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- dasatinib
dasatinib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of dasatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling. - deflazacort
lonafarnib will increase the level or effect of deflazacort by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- delavirdine
delavirdine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of delavirdine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling. - desogestrel
lonafarnib will increase the level or effect of desogestrel by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.
- desvenlafaxine
desvenlafaxine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- dexamethasone
lonafarnib will increase the level or effect of dexamethasone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- dexlansoprazole
dexlansoprazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of dexlansoprazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
lonafarnib will increase the level or effect of dexlansoprazole by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - dexmedetomidine
dexmedetomidine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- diazepam
diazepam will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of diazepam by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - diazepam intranasal
lonafarnib will increase the level or effect of diazepam intranasal by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.
- diclofenac
diclofenac will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- dihydroergotamine
dihydroergotamine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- disulfiram
disulfiram will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- docetaxel
docetaxel will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- doxorubicin
doxorubicin will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- doxorubicin liposomal
doxorubicin liposomal will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- drospirenone
drospirenone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- elacestrant
lonafarnib will increase the level or effect of elacestrant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- ergotamine
ergotamine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- escitalopram
lonafarnib will increase the level or effect of escitalopram by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.
- esomeprazole
lonafarnib will increase the level or effect of esomeprazole by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.
- ethinylestradiol
ethinylestradiol will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- etoposide
etoposide will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- fentanyl
fentanyl will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- fentanyl transdermal
fentanyl transdermal will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- fentanyl transmucosal
fentanyl transmucosal will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- fexinidazole
lonafarnib will decrease the level or effect of fexinidazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If unable to avoid coadministration, monitor fexinidazole for decreased efficacy owing to decreased plasma concentrations of active M1 and M2 metabolites.
- flibanserin
lonafarnib will increase the level or effect of flibanserin by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.
- fluoxetine
fluoxetine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- fluvastatin
fluvastatin will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- fosamprenavir
lonafarnib will increase the level or effect of fosamprenavir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- glyburide
glyburide will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- hydralazine
hydralazine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- ifosfamide
ifosfamide will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of ifosfamide by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - imipramine
lonafarnib will increase the level or effect of imipramine by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.
- infigratinib
lonafarnib will increase the level or effect of infigratinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- irbesartan
irbesartan will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- isradipine
isradipine will increase the level or effect of lonafarnib by affecting hepatic enzyme CYP2E1 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- istradefylline
istradefylline will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- lansoprazole
lansoprazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of lansoprazole by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - leniolisib
lonafarnib will increase the level or effect of leniolisib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- lenvatinib
lenvatinib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- lidocaine
lidocaine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- lomustine
lomustine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- losartan
losartan will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- lurasidone
lurasidone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- mefloquine
mefloquine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- mephobarbital
lonafarnib will increase the level or effect of mephobarbital by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.
- mestranol
mestranol will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- methadone
methadone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- methimazole
methimazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- methoxsalen
methoxsalen will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- methsuximide
lonafarnib will increase the level or effect of methsuximide by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.
- methylprednisolone
methylprednisolone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- micafungin
micafungin will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- mirtazapine
mirtazapine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- mitoxantrone
mitoxantrone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- mobocertinib
lonafarnib will increase the level or effect of mobocertinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug.
- nevirapine
nevirapine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- nicardipine
nicardipine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- nifedipine
nifedipine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- nilotinib
nilotinib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- nisoldipine
nisoldipine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- nizatidine
nizatidine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- olanzapine
olanzapine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- omaveloxolone
lonafarnib will increase the level or effect of omaveloxolone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If unavoidable, reduce omaveloxolone dose to 50 mg/day. Closely monitor and discontinue if adverse effects emerge.
- omeprazole
omeprazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of omeprazole by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - orphenadrine
orphenadrine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- ospemifene
lonafarnib will increase the level or effect of ospemifene by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling.
- oxybutynin
oxybutynin will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- oxybutynin topical
oxybutynin topical will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- oxybutynin transdermal
oxybutynin transdermal will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- palbociclib
palbociclib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- pantoprazole
pantoprazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of pantoprazole by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - paroxetine
paroxetine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- pazopanib
pazopanib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- pentamidine
pentamidine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of pentamidine by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - pilocarpine
pilocarpine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- pimozide
pimozide will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- pitolisant
pitolisant will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- pravastatin
pravastatin will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- prednisolone
prednisolone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to or continue lonafarnib at starting dose. During coadministration, closely monitor for arrhythmias and events (eg, syncope, heart palpitations).
- primaquine
primaquine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to or continue lonafarnib at starting dose. During coadministration, closely monitor for arrhythmias and events (eg, syncope, heart palpitations).
- progesterone intravaginal gel
progesterone intravaginal gel will decrease the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to or continue lonafarnib at starting dose. During coadministration, closely monitor for arrhythmias and events (eg, syncope, heart palpitations).
lonafarnib will increase the level or effect of progesterone intravaginal gel by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - progesterone micronized
progesterone micronized will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to or continue lonafarnib at starting dose. During coadministration, closely monitor for arrhythmias and events (eg, syncope, heart palpitations).
lonafarnib will increase the level or effect of progesterone micronized by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - progesterone, natural
progesterone, natural will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to or continue lonafarnib at starting dose. During coadministration, closely monitor for arrhythmias and events (eg, syncope, heart palpitations).
- propofol
propofol will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- quazepam
lonafarnib will increase the level or effect of quazepam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- quetiapine
lonafarnib will increase the level or effect of quetiapine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- quinidine
lonafarnib will increase the level or effect of quinidine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
quinidine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown. - quinine
lonafarnib will increase the level or effect of quinine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
quinine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown. - rabeprazole
lonafarnib will increase the level or effect of rabeprazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
rabeprazole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of rabeprazole by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - ranitidine
ranitidine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- ranolazine
lonafarnib will increase the level or effect of ranolazine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
ranolazine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown. - regorafenib
lonafarnib will increase the level or effect of regorafenib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- rimegepant
lonafarnib will increase the level or effect of rimegepant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- riociguat
lonafarnib will increase the level or effect of riociguat by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- risperidone
risperidone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- rivaroxaban
lonafarnib will increase the level or effect of rivaroxaban by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- roflumilast
lonafarnib will increase the level or effect of roflumilast by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- rolapitant
lonafarnib will increase the level or effect of rolapitant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- romidepsin
lonafarnib will increase the level or effect of romidepsin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- ropivacaine
lonafarnib will increase the level or effect of ropivacaine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- rufinamide
rufinamide will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- ruxolitinib
lonafarnib will increase the level or effect of ruxolitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- ruxolitinib topical
lonafarnib will increase the level or effect of ruxolitinib topical by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- salmeterol
lonafarnib will increase the level or effect of salmeterol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- saxagliptin
lonafarnib will increase the level or effect of saxagliptin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- selegiline
selegiline will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- selpercatinib
lonafarnib will increase the level or effect of selpercatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
selpercatinib will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown. - selumetinib
lonafarnib will increase the level or effect of selumetinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- sildenafil
lonafarnib will increase the level or effect of sildenafil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- siponimod
lonafarnib will increase the level or effect of siponimod by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- sirolimus
lonafarnib will increase the level or effect of sirolimus by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
sirolimus will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown. - sofosbuvir/velpatasvir
lonafarnib will increase the level or effect of sofosbuvir/velpatasvir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- solifenacin
lonafarnib will increase the level or effect of solifenacin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- sonidegib
lonafarnib will increase the level or effect of sonidegib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- sorafenib
lonafarnib will increase the level or effect of sorafenib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- sparsentan
lonafarnib, sparsentan. Either increases toxicity of the other by pharmacodynamic synergism. Avoid or Use Alternate Drug. If unavoidable, interrupt treatment with sparsentan. When resuming sparsentan, consider dose titration. .
- sufentanil
lonafarnib will increase the level or effect of sufentanil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- sufentanil SL
lonafarnib will increase the level or effect of sufentanil SL by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- sunitinib
lonafarnib will increase the level or effect of sunitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- suvorexant
lonafarnib will increase the level or effect of suvorexant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- tacrolimus
lonafarnib will increase the level or effect of tacrolimus by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- tacrolimus ointment
lonafarnib will increase the level or effect of tacrolimus ointment by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
tacrolimus ointment will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown. - tadalafil
lonafarnib will increase the level or effect of tadalafil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- tamoxifen
lonafarnib will increase the level or effect of tamoxifen by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
tamoxifen will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown. - tamsulosin
lonafarnib will increase the level or effect of tamsulosin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- tasimelteon
lonafarnib will increase the level or effect of tasimelteon by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- temsirolimus
lonafarnib will increase the level or effect of temsirolimus by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
temsirolimus will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown. - teniposide
lonafarnib will increase the level or effect of teniposide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
teniposide will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown. - testosterone
testosterone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- testosterone buccal system
testosterone buccal system will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- testosterone topical
testosterone topical will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- tezacaftor
lonafarnib will increase the level or effect of tezacaftor by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- theophylline
lonafarnib will increase the level or effect of theophylline by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- tiagabine
lonafarnib will increase the level or effect of tiagabine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- ticagrelor
ticagrelor will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- ticlopidine
lonafarnib will increase the level or effect of ticlopidine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
ticlopidine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown. - tinidazole
lonafarnib will increase the level or effect of tinidazole by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- tofacitinib
lonafarnib will increase the level or effect of tofacitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
lonafarnib will increase the level or effect of tofacitinib by affecting hepatic enzyme CYP2C19 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - tolterodine
lonafarnib will increase the level or effect of tolterodine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- tolvaptan
lonafarnib will increase the level or effect of tolvaptan by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- toremifene
lonafarnib will increase the level or effect of toremifene by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- trabectedin
lonafarnib will increase the level or effect of trabectedin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- tramadol
lonafarnib will increase the level or effect of tramadol by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- tranylcypromine
tranylcypromine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- trazodone
trazodone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of trazodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling. - triazolam
lonafarnib will increase the level or effect of triazolam by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- trimethoprim
lonafarnib will increase the level or effect of trimethoprim by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- trimipramine
lonafarnib will increase the level or effect of trimipramine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
lonafarnib will increase the level or effect of trimipramine by affecting hepatic enzyme CYP2C9/10 metabolism. Avoid or Use Alternate Drug. Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates. If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling. - tucatinib
lonafarnib will increase the level or effect of tucatinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- ubrogepant
lonafarnib will increase the level or effect of ubrogepant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- ulipristal
lonafarnib will increase the level or effect of ulipristal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- umeclidinium bromide/vilanterol inhaled
lonafarnib will increase the level or effect of umeclidinium bromide/vilanterol inhaled by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- upadacitinib
lonafarnib will increase the level or effect of upadacitinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- valbenazine
lonafarnib will increase the level or effect of valbenazine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- valproic acid
valproic acid will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- vandetanib
lonafarnib will increase the level or effect of vandetanib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- velpatasvir
lonafarnib will increase the level or effect of velpatasvir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- vemurafenib
lonafarnib will increase the level or effect of vemurafenib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- venetoclax
lonafarnib will increase the level or effect of venetoclax by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- venlafaxine
lonafarnib will increase the level or effect of venlafaxine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- vilanterol/fluticasone furoate inhaled
lonafarnib will increase the level or effect of vilanterol/fluticasone furoate inhaled by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- vilazodone
lonafarnib will increase the level or effect of vilazodone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- vinblastine
vinblastine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of vinblastine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling. - vincristine
vincristine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of vincristine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling. - vincristine liposomal
lonafarnib will increase the level or effect of vincristine liposomal by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- vinorelbine
vinorelbine will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
lonafarnib will increase the level or effect of vinorelbine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling. - vorapaxar
lonafarnib will increase the level or effect of vorapaxar by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- vortioxetine
lonafarnib will increase the level or effect of vortioxetine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- voxilaprevir
lonafarnib will increase the level or effect of voxilaprevir by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- zafirlukast
zafirlukast will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- zileuton
zileuton will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- ziprasidone
ziprasidone will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. If coadministration of lonafarnib (a sensitive CYP3A substrate) with weak CYP3A inhibitors is unavoidable, reduce to, or continue lonafarnib at starting dose. Closely monitor for arrhythmias and events (eg, syncope, heart palpitations) since lonafarnib effect on QT interval is unknown.
- zolpidem
lonafarnib will increase the level or effect of zolpidem by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
- zonisamide
lonafarnib will increase the level or effect of zonisamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Avoid or Use Alternate Drug. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling.
Monitor Closely (94)
- afatinib
lonafarnib will increase the level or effect of afatinib by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- apixaban
lonafarnib will increase the level or effect of apixaban by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- atogepant
lonafarnib will increase the level or effect of atogepant by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Recommended atogepant dosage is 10 mg PO qDay when coadministered with strong CYP3A4 inhibitors.
- betrixaban
lonafarnib will increase the level or effect of betrixaban by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- cimetidine
lonafarnib will increase the level or effect of cimetidine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- colchicine
lonafarnib will increase the level or effect of colchicine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- dabigatran
lonafarnib will increase the level or effect of dabigatran by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- darolutamide
lonafarnib will increase the level or effect of darolutamide by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- dasabuvir
lonafarnib will increase the level or effect of dasabuvir by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- daunorubicin
lonafarnib will increase the level or effect of daunorubicin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- daunorubicin liposomal
lonafarnib will increase the level or effect of daunorubicin liposomal by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- desloratadine
lonafarnib will increase the level or effect of desloratadine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- dexamethasone
lonafarnib will increase the level or effect of dexamethasone by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- digoxin
lonafarnib will increase the level or effect of digoxin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- docetaxel
lonafarnib will increase the level or effect of docetaxel by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- doxorubicin
lonafarnib will increase the level or effect of doxorubicin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- duvelisib
lonafarnib will increase the level or effect of duvelisib by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- edoxaban
lonafarnib will increase the level or effect of edoxaban by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- eletriptan
lonafarnib will increase the level or effect of eletriptan by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- etoposide
lonafarnib will increase the level or effect of etoposide by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- everolimus
lonafarnib will increase the level or effect of everolimus by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- fexofenadine
lonafarnib will increase the level or effect of fexofenadine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- glecaprevir/pibrentasvir
lonafarnib will increase the level or effect of glecaprevir/pibrentasvir by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- hydrocortisone
lonafarnib will increase the level or effect of hydrocortisone by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- idarubicin
lonafarnib will increase the level or effect of idarubicin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- irinotecan
lonafarnib will increase the level or effect of irinotecan by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- irinotecan liposomal
lonafarnib will increase the level or effect of irinotecan liposomal by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- ivermectin
lonafarnib will increase the level or effect of ivermectin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- ledipasvir/sofosbuvir
lonafarnib will increase the level or effect of ledipasvir/sofosbuvir by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- lenvatinib
lonafarnib will increase the level or effect of lenvatinib by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- linagliptin
lonafarnib will increase the level or effect of linagliptin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- loperamide
lonafarnib will increase the level or effect of loperamide by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Loperamide is contraindicated in patients aged <2 years; when lonafarnib is coadministered with loperamide, do not exceed loperamide 1 mg qDay when first coadministered; slowly increase loperamide dosage with caution in accordance with its approved product labeling.
lonafarnib will increase the level or effect of loperamide by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed. - loratadine
lonafarnib will increase the level or effect of loratadine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- lumateperone
lonafarnib will increase the level or effect of lumateperone by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce lumateperone dose to 10.5 mg/day if coadministered with strong CYP3A4 inhibitors.
- maraviroc
lonafarnib will increase the level or effect of maraviroc by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- methotrexate
lonafarnib will increase the level or effect of methotrexate by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- mirvetuximab soravtansine
lonafarnib will increase the level or effect of mirvetuximab soravtansine by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Coadministration with strong CYP3A4 inhibitors may increase unconjugated DM4 (a CYP3A4 substrate and the cytotoxic component of the antibody drug conjugate for mirvetuximab soravtansine) exposure, which may increase the risk of adverse reactions.
- mitomycin
lonafarnib will increase the level or effect of mitomycin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- morphine
lonafarnib will increase the level or effect of morphine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- nadolol
lonafarnib will increase the level or effect of nadolol by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- naldemedine
lonafarnib will increase the level or effect of naldemedine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- nicardipine
lonafarnib will increase the level or effect of nicardipine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- nilotinib
lonafarnib will increase the level or effect of nilotinib by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- nintedanib
lonafarnib will increase the level or effect of nintedanib by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- ombitasvir/paritaprevir/ritonavir
lonafarnib will increase the level or effect of ombitasvir/paritaprevir/ritonavir by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- ombitasvir/paritaprevir/ritonavir & dasabuvir (DSC)
lonafarnib will increase the level or effect of ombitasvir/paritaprevir/ritonavir & dasabuvir (DSC) by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- ondansetron
lonafarnib will increase the level or effect of ondansetron by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- osimertinib
lonafarnib will increase the level or effect of osimertinib by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- paclitaxel
lonafarnib will increase the level or effect of paclitaxel by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- paclitaxel protein bound
lonafarnib will increase the level or effect of paclitaxel protein bound by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- paliperidone
lonafarnib will increase the level or effect of paliperidone by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- pazopanib
lonafarnib will increase the level or effect of pazopanib by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- pomalidomide
lonafarnib will increase the level or effect of pomalidomide by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- pralsetinib
lonafarnib will increase the level or effect of pralsetinib by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- pravastatin
lonafarnib will increase the level or effect of pravastatin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- prednisone
lonafarnib will increase the level or effect of prednisone by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- quinidine
lonafarnib will increase the level or effect of quinidine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- quinine
lonafarnib will increase the level or effect of quinine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- ranolazine
lonafarnib will increase the level or effect of ranolazine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- rifaximin
lonafarnib will increase the level or effect of rifaximin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- rimegepant
lonafarnib will increase the level or effect of rimegepant by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- riociguat
lonafarnib will increase the level or effect of riociguat by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- risperidone
lonafarnib will increase the level or effect of risperidone by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- romidepsin
lonafarnib will increase the level or effect of romidepsin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- saxagliptin
lonafarnib will increase the level or effect of saxagliptin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- silodosin
lonafarnib will increase the level or effect of silodosin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- sirolimus
lonafarnib will increase the level or effect of sirolimus by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- sitagliptin
lonafarnib will increase the level or effect of sitagliptin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- sofosbuvir
lonafarnib will increase the level or effect of sofosbuvir by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- sofosbuvir/velpatasvir
lonafarnib will increase the level or effect of sofosbuvir/velpatasvir by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- sparsentan
sparsentan will decrease the level or effect of lonafarnib by affecting hepatic enzyme CYP2C9/10 metabolism. Use Caution/Monitor. Sparsentan (a CYP2C9 inducer) decreases exposure of CYP2C9 substrates and reduces efficacy related to these substrates.
- tacrolimus
lonafarnib will increase the level or effect of tacrolimus by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- talazoparib
lonafarnib will increase the level or effect of talazoparib by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- tazemetostat
lonafarnib will increase the level or effect of tazemetostat by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- temsirolimus
lonafarnib will increase the level or effect of temsirolimus by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- teniposide
lonafarnib will increase the level or effect of teniposide by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- tenofovir AF
lonafarnib will increase the level or effect of tenofovir AF by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- tenofovir DF
lonafarnib will increase the level or effect of tenofovir DF by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- testosterone
lonafarnib will increase the level or effect of testosterone by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- ticagrelor
lonafarnib will increase the level or effect of ticagrelor by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- tisotumab vedotin
lonafarnib increases levels of tisotumab vedotin by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Use Caution/Monitor. Tisotumab vedotin?s active metabolite (MMAE) is a CYP3A4 substrate. Coadministration with strong CYP3A4 inhibitors may increase unconjugated MMAE systemic exposure and increase risk of adverse effects.
- tolvaptan
lonafarnib will increase the level or effect of tolvaptan by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- topotecan
lonafarnib will increase the level or effect of topotecan by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- trabectedin
lonafarnib will increase the level or effect of trabectedin by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- ubrogepant
lonafarnib will increase the level or effect of ubrogepant by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- vardenafil
lonafarnib will increase the level or effect of vardenafil by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Avoid coadministration with sensitive CYP3A substrates. If coadministration unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with product labeling. Vardenafil dose may need to be reduced if coadministered with moderate or strong CYP3A4 inhibitors.
- velpatasvir
lonafarnib will increase the level or effect of velpatasvir by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- vemurafenib
lonafarnib will increase the level or effect of vemurafenib by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- vinblastine
lonafarnib will increase the level or effect of vinblastine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- vincristine
lonafarnib will increase the level or effect of vincristine by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- vincristine liposomal
lonafarnib will increase the level or effect of vincristine liposomal by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- voxilaprevir
lonafarnib will increase the level or effect of voxilaprevir by P-glycoprotein (MDR1) efflux transporter. Modify Therapy/Monitor Closely. Lonafarnib is a weak P-gp inhibitor. Monitor for adverse reactions if coadministered with P-gp substrates where minimal concentration changes may lead to serious or life-threatening toxicities. Reduce P-gp substrate dose if needed.
- warfarin
lonafarnib will increase the level or effect of warfarin by Other (see comment). Use Caution/Monitor. Warfarin's less potent R-enantiomer is metabolized in part by CYP3A4 (and also CYP1A2 and CYP2C19). Monitor INR more frequently if coadministered with inhibitors of these isoenzymes and adjust warfarin dose if needed.
- zanubrutinib
lonafarnib will increase the level or effect of zanubrutinib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Modify Therapy/Monitor Closely. Reduce zanubrutinib (a CYP3A4 substrate) to 80 mg PO BID when coadministered with a moderate CYP3A4 inhibitor. Interrupt dose as recommended for adverse reactions. After discontinuing the CYP3A4 inhibitor, resume previous zanubrutinib dose.
Minor (4)
- acetazolamide
acetazolamide will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- anastrozole
anastrozole will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- cyclophosphamide
cyclophosphamide will increase the level or effect of lonafarnib by affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown.
- ganaxolone
lonafarnib, ganaxolone. affecting hepatic/intestinal enzyme CYP3A4 metabolism. Minor/Significance Unknown. Changes in ganaxolone exposures when coadministered with strong, moderate, or weak CYP3A4 inhibitors are not expected to be clinically significant.
Adverse Effects
>10%
Vomiting (90%)
Diarrhea (81%)
Infection (78%)
Nausea (56%)
Decreased appetite/anorexia (53%)
Fatigue (51%)
Upper respiratory tract infection (51%)
Abdominal pain (48%)
Musculoskeletal pain (48%)
Electrolyte abnormalities (43%)
Headache (37%)
Decreased weight (37%)
Myelosuppression (35%)
Increased AST (35%)
Decreased blood bicarbonate (33%)
Cough (33%)
Hypertension (29%)
Increased ALT (27%)
Ocular changes (24%)
Constipation (22%)
Epistaxis (21%)
Rhinitis (19%)
Pyrexia (14%)
Cerebral ischemia (11%)
Rash (11%)
1-10%
Pruritus (8%)
Mucositis (8%)
Flatulence (6%)
Dehydration (5%)
Depressed mood (5%)
Warnings
Contraindications
Strong or moderate CYP3A inhibitors or inducers
Midazolam
Lovastatin, simvastatin, or atorvastatin
Cautions
Laboratory abnormalities reported, including electrolyte abnormalities (eg, hyperkalemia, hypokalemia, hyponatremia, hypercalcemia), myelosuppression (eg, decreased ANC, WBC count, lymphocytes, hemoglobin, hematocrit), and increased liver enzymes; periodically monitor for these abnormalities and correct accordingly
Nephrotoxicity observed in rats at plasma drug exposures similar to humans
Retinal toxicity (rod-dependent, low-light vision decline) observed in monkeys at plasma drug exposures similar to humans
Fertility impairment observed in female and male rats
Based on animal reproduction studies, can cause embryofetal toxicity
Drug interaction overview
-
CYP3A4 inhibitors
- Lonafarnib is a sensitive substrate of CYP3A4
- Strong or moderate inhibitors: Contraindicated
- Weak inhibitors: If unable to avoid coadministration, reduce to or continue lonafarnib at the starting dose
-
CYP3A4 inducers
- Lonafarnib is a sensitive substrate of CYP3A4
- Strong or moderate: Contraindicated
-
CYP2C9 inhibitors
- Lonafarnib is a CYP2C9 substrate
- Coadministration may increase lonafarnib AUC and peak concentration
- Avoid coadministration with CYP2C9 inhibitors
- If unavoidable, closely monitor patients for arrhythmias and events (eg, syncope, heart palpitations); effect of increased lonafarnib systemic exposure on the QT interval is unknown
-
CYP3A4 substrates
- Lonafarnib is a strong CYP3A inhibitor
- HMG CoA reductase inhibitors: Coadministration is contraindicated with lovastatin, simvastatin, or atorvastatin
- Midazolam: Coadministration is contraindicated; temporarily discontinue lonafarnib for 10-14 days before and 2 days after administration of midazolam
- Loperamide: Loperamide is contraindicated in patients aged <2 years; when lonafarnib is coadministered with loperamide, do not exceed loperamide 1 mg qDay when first coadministered; slowly increase loperamide dosage with caution in accordance with its approved product labeling
- Other sensitive CYP3A substrates: Avoid coadministration; if coadministration is unavoidable, monitor for adverse reactions and reduce CYP3A substrate dose in accordance with their approved product labeling
- Certain CYP3A substrates: If coadministered with certain CYP3A substrates where minimal concentration changes may lead to serious or life-threatening toxicities, monitor for adverse reactions and reduce the CYP3A substrate dose in accordance with its approved product labeling
-
CYP2C19 substrates
- Avoid coadministration
- Lonafarnib may increase the AUC and peak concentration of CYP2C19 substrates
- If coadministration unavoidable, monitor for adverse reactions and reduce the CYP2C19 substrate dose in accordance with its approved product labeling
-
P-gp substrates
- Lonafarnib is a weak P-gp inhibitor
- Monitor for adverse reactions if coadministered with P-gp substrates (eg, digoxin, dabigatran) where minimal concentration changes may lead to serious or life-threatening toxicities
- Reduce the P-gp substrate dose in accordance with its approved product labeling
Pregnancy & Lactation
Pregnancy
Based on findings from animal studies, can cause embryofetal harm when administered to pregnant females
Advise pregnant females of fetal risk
Animal studies
- In animal reproduction studies, administration to pregnant rats during organogenesis produced embryofetal toxicity at exposures that were 1.2-times the human exposure at the recommended dose of 150 mg/m2 BID
- In pregnant rabbits, administration of lonafarnib during organogenesis produced skeletal malformations and variations at exposures lower than the human exposure at 150 mg/m2 BID, and maternal toxicity at 26 times the human exposure at 150 mg/m2 BID
Fertility
- Fertility impairment observed in female and male rats
- Advise females and males of reproductive potential of the animal fertility findings
- The impact on pubertal development and potential for impaired fertility in humans have not been adequately evaluated
Lactation
Data are unavailable on presence in human milk, effects on breastfed infants, or effects on milk production
Lonafarnib is excreted in rat milk; when a drug is present in animal milk, it is likely that the drug will be present in human milk
Consider the developmental and health benefits of breastfeeding along with the mother’s clinical need for the drug and any potential adverse effects of the breastfed infant from lonafarnib or from the underlying maternal condition
Pregnancy Categories
A: Generally acceptable. Controlled studies in pregnant women show no evidence of fetal risk.
B: May be acceptable. Either animal studies show no risk but human studies not available or animal studies showed minor risks and human studies done and showed no risk. C: Use with caution if benefits outweigh risks. Animal studies show risk and human studies not available or neither animal nor human studies done. D: Use in LIFE-THREATENING emergencies when no safer drug available. Positive evidence of human fetal risk. X: Do not use in pregnancy. Risks involved outweigh potential benefits. Safer alternatives exist. NA: Information not available.Pharmacology
Mechanism of Action
Oral farnesyltransferase inhibitor (FTI); farnesyltransferase is an enzyme involved in modification of proteins through a process called prenylation
Mutation in the LMNA gene causes over-production of progerin, a farnesylated-aberrant protein; persistent farnesylation causes progerin accumulation in the inner nuclear membrane and is, at least partly, responsible for HGPS
Accumulation of the defective lamin A protein makes the nucleus unstable, leading to the process of premature aging in children with progeria
Absorption
Peak plasma time
- 115 mg/m2: 2 hr
- 150 mg/m2: 4 hr
Peak plasma concentration
- 115 mg/m2: 1,777 ng/mL
- 150 mg/m2: 2,695 ng/mL
AUC
-
0-8 hr
- 115 mg/m2: 9,869 ng⋅hr/mL
- 150 mg/m2: 16,020 ng⋅hr/mL
-
>8 hr
- 115 mg/m2: 12,365 ng⋅hr/mL
- 150 mg/m2: 19,539 ng⋅hr/mL
Distribution
Protein bound: ≥99%
Vd: 87.8 L (100 mg PO BID): 97.4 L (75 mg PO BID)
Metabolism
Primarily metabolized by CYP3A
Metabolized to a lesser extent by CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, and CYP2E1 in vitro
Elimination
Half-life: ~4-6 hr
Excretion
- Feces ~62%; urine <1%
- 2 most predominant metabolites were HM17 and HM21 (active metabolite) that accounted for 15% and 14% of plasma radioactivity, respectively
Administration
Oral Administration
Take BID with morning and evening meals to avoid gastrointestinal adverse effects
Administer capsules whole with sufficient amount of water
Do not chew capsules
Unable to swallow capsule
- Entire contents of capsules can be mixed with Ora-Blend SF, Ora-Plus, orange juice, or applesauce
- Do not mix with juice containing grapefruit or Seville oranges, owing to potential drug interaction (contraindicated with moderate or strong CYP3A inhibitors or inducers)
- Mixture must be prepared fresh for each dose and taken within ~10 minutes of mixing
-
Preparation of dose in Ora-Blend SF, Ora-Plus, or orange juice
- For each capsule, empty contents of the capsule into container containing 5-10 mL of the liquid
- Mix thoroughly with a spoon
- Consume entire serving
-
Preparation of dose in applesauce
- For each capsule, empty contents of the capsule into container containing 1-2 teaspoonful of applesauce
- Mix thoroughly with a spoon
- Consume entire serving
Missed dose
- ≥8 hours before next scheduled dose: Take dose as soon as possible with food
- <8 hours remains before next scheduled dose: Skip missed dose, and resume taking at next scheduled dose
Storage
Capsules: Store at 20-25ºC (68-77ºF); excursions permitted to 15-30ºC (59-86ºF)
Images
Formulary
Adding plans allows you to compare formulary status to other drugs in the same class.
To view formulary information first create a list of plans. Your list will be saved and can be edited at any time.
Adding plans allows you to:
- View the formulary and any restrictions for each plan.
- Manage and view all your plans together – even plans in different states.
- Compare formulary status to other drugs in the same class.
- Access your plan list on any device – mobile or desktop.